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In this letter, we report on our work providing a polynomial time reduction from Bayesian incentive

compatible mechanism design to Bayesian algorithm design for welfare maximization problems.

Unlike prior results, our reduction achieves exact incentive compatibility for problems with multi-
dimensional and continuous type spaces.

1. INTRODUCTION

Does running an incentive compatible mechanism require more computational re-
sources than running an algorithm for the same problem? In other words, is there
a computationally efficient reduction from mechanism design to algorithm design?
Such a reduction, if it existed, would be an exceedingly powerful tool. System de-
signers could ignore issues of private information and strategic behavior, and instead
focus on coming up with algorithms that achieve their objectives in an environment
where all information is public. Those algorithms could then be transformed by a
general-purpose reduction into mechanisms that work as desired even when users
of the system are strategic.

A reduction as envisioned can only exist under specific assumptions. If mone-
tary transfers are not allowed, the Gibbard-Satterthwaite Impossibility Theorem
[Gibbard 1973; Satterthwaite 1975] puts severe limitations on the social choice
functions that can be implemented in dominant strategy equilibrium. Even for
mechanisms with monetary transfers, there are important objectives, such as ap-
proximate makespan minimization in job scheduling, that are easy to achieve al-
gorithmically but impossible to implement as a dominant-strategy equilibrium of
a mechanism [Nisan and Ronen 2001; Ashlagi et al. 2012] no matter what com-
putational resources one devotes to the mechanism. Finally, there are computa-
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tional barriers that stand in the way of reducing mechanism design to algorithm
design. A long line of work culminating in [Papadimitriou et al. 2008; Dughmi and
Vondrák 2015; Dobzinski and Vondrák 2016] furnished examples of social welfare
maximization problems for which there exist computationally efficient constant-
factor approximation algorithms, yet no computationally efficient mechanism can
implement a constant-factor approximation to social welfare in dominant-strategy
equilibrium. In particular, this rules out the possibility of an efficient reduction from
dominant-strategy mechanism design to algorithm design, even when the objective
is social welfare maximization.

These negative results on dominant-strategy implementation motivate relaxing
the solution concept to Bayesian incentive compatibility (BIC). The search for
black-box reductions from BIC mechanism design to algorithm design was initiated
by Hartline and Lucier [2010; 2015]. For single-parameter domains they presented
a reduction, parameterized by an arbitrarily small ε > 0, that incurs at most
ε loss in expected social welfare and runs in time poly(n, ε−1), where n denotes
the number of agents. The insights underlying this reduction were translated to
environments with multi-dimensional type spaces in [Bei and Huang 2011; Hartline
et al. 2011], resulting in a reduction that makes use of an oracle for computing
interim allocation functions, a #P-hard problem. Alternatively, rather than exactly
computing the interim allocation function one can estimate it by sampling. This
results in a reduction that achieves ε-BIC rather than BIC, and whose running
time is poly(n, ε−O(∆)) where ∆ is a parameter representing the dimensionality of
the type spaces. For discrete (i.e., zero-dimensional) type spaces, the incentive-
compatibility of the reduction was improved from ε-BIC to BIC by [Hartline et al.
2015].

These positive results raised hope that there might be a polynomial time reduc-
tion from Bayesian incentive compatible mechanism design to algorithm design for
welfare maximization problems in general. However, as explained in §2.4 below, it
was actually quite unclear whether such a reduction could exist when type spaces
are continuous and multi-dimensional. Our paper [Dughmi et al. 2017] resolves this
question affirmatively: we present a polynomial time reduction that achieves exact
BIC and places no restriction on agents’ type spaces. The key novel ingredient in
our reduction is a set of algorithms for mapping a tuple of input distributions to
an output distribution, in a computational model where the input and output dis-
tributions are represented implicitly by sampling oracles rather than explicitly by
listing the probability of each sample point of the distribution. This model, which
we call expectations from samples, generalizes the literature on Bernoulli factories
in probability theory [Keane and O’Brien 1994;  Latuszyński 2010].

Our reduction builds heavily upon ideas from the prior work on black-box BIC
reductions, and we devote §2 to sketching some of those ideas and highlighting
the key barrier that our work overcomes. In §3-4 we explain some of the main
novel ideas underlying our reduction. We conclude in §5 with some remarks about
limitations of our approach and open questions.
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2. BACKGROUND AND OVERVIEW OF THE REDUCTION

We assume each agent i has a private type ti independently sampled from type
space T i; the profile of all agents’ types is denoted by t. There is a set O of
outcomes, and agent i’s value for outcome o is given by a function vali(ti, o) taking
values in [0, 1]. Agents are risk-neutral and have quasi-linear utility.

Our reduction is given black-box access to an algorithm computing an allocation
function A :

∏
i T i → O. It is also given a sampling oracle for each agent’s type

space. The objective is to use these oracles to implement, in polynomial time, a
mechanism for which truthtelling is a Bayes-Nash equilibrium and whose expected
social welfare loss, relative to A, is bounded by ε:

E

[∑
i

vali(ti,M(t))

]
> E

[∑
i

vali(ti,A(t))

]
− ε.

For an allocation function A, the interim allocation function for agent i outputs the
outcome distribution obtained by averaging over the randomness in other agents’
reports:

Ai(ti) = E
[
A(ti, t−i)

]
.

2.1 Ironing as type resampling

For linear single-parameter domains — in which types are scalars, outcomes are
vectors indexed by agents, and vali(t, o) = t · oi — an allocation function is imple-
mentable by a BIC mechanism if and only if each of its interim allocation functions
is monotone. The key insight of Hartline and Lucier [2010; 2015] was that even
if the interim allocation function Ai instituted by the black-box algorithm is non-
monotone, we can make it monotone by “ironing”. The ironing procedure identifies
a set of intervals on which Ai is non-monotone and modifies the interim allocation
function to be constant on those intervals. As observed by Hartline and Lucier,
this can be accomplished the following resampling procedure: if the reported type
ti belongs to an ironing interval I, then we draw a fresh random sample si from
I and substitute si in place of ti when calling the allocation function. (For conve-
nience, define si = ti in the event that ti does not belong to one of agent i’s ironing
intervals.) Let Āi(ti) denote the interim allocation function of this modified mecha-
nism, i.e. Āi(ti) = E

[
Ai(si) | ti

]
. The resampling procedure satisfies three crucial

properties.

(1) Distribution preservation: si has the same distribution as ti.

(2) Monotonicity: Āi(ti) is monotonic in ti.

(3) Welfare improvement: E
[
vali(ti, Āi(ti))

]
≥ E

[
vali(ti,Ai(ti))

]
.

The first property implies that, if all agents other than than i are truthful, then i
is indifferent between bidding against profile t−i or bidding against s−i. This fact,
in conjunction with the second property, implies that the modified mechanism is
BIC. The third property ensures that the mechanism’s expected social welfare is at
least as good as the original algorithm’s.

An important obstacle to designing a black-box reduction based on this idea is
that the reduction has only oracle access to A, so it cannot directly manipulate
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the interim allocation functions Ai. Instead it must simulate the ironing proce-
dure using only sample access to the type distribution of each agent, and oracle
access to the allocation function. This inevitably leads to small sampling errors in
estimating the ironed allocation function, which introduces the potential for small
amounts of non-monotonicity. To avoid spoiling the mechanism’s incentive compat-
ibility, the reduction of [Hartline and Lucier 2010] mixes in a “blatantly monotone
mechanism”: with a small probability, instead of using the resampling procedure
described above, the mechanism simply ignores the reports of all agents other than
i and implements allocation function that is strictly monotone in i’s reported type.
The strict incentive for truthtelling instituted by this blatantly monotone mech-
anism overwhelms the small incentive for misreporting that might potentially be
brought about by sampling error in estimating Āi.

2.2 Replicas and surrogates

In generalizing the approach of Hartline and Lucier from single-dimensional to
multi-dimensional types, the first question that needs to be addressed is: what is
the multi-dimensional counterpart of ironing? This question was answered in [Bei
and Huang 2011; Hartline et al. 2011].

For general (as opposed to single-dimensional) type spaces, Rochet’s [1987] well-
known characterization of truthfulness says that an allocation function is imple-
mentable by a BIC mechanism if and only if each of its interim allocation func-
tions satisfies cyclic monotonicity: for every finite sequence of types of agent i,
ti1, t

i
2, . . . , t

i
m, and every permutation π, we have

m∑
j=1

vali(tij ,Ai(tij)) ≥
m∑
j=1

vali(tiπ(j),A
i(tij)).

(To verify this condition for all permutations, it suffices to verify it for cyclic
permutations, which explains the term “cyclic monotonicity”.) In light of the
ideas presented in the preceding subsection, then, it makes sense to interpret
multi-dimensional ironing as a type resampling procedure that satisfies distribution
preservation, cyclic monotonicity, and welfare improvement. Bei and Huang [2011],
and, independently, Hartline et al. [2011] discovered a type resampling procedure
that satisfies all three properties. It couples the true type and the resampled “sur-
rogate” into a joint distribution on pairs (ti, si) that maximizes E

[
vali(ti,Ai(si))

]
subject to the constraint that the marginal distributions of ti and of si are both
equal to the type distribution of agent i.

When the type space T i is finite and ti is uniformly distributed on T i, the
coupling can be computed by solving a maximum weight matching problem on a
bipartite graph whose two vertex sets are both in one-to-one correspondence with
T i; the edge joining ti0 to ti1 is defined to have weight vali(ti0,Ai(ti1)). More gener-
ally, if T i is finite and the distribution of ti is non-uniform, the optimal coupling
can be computed by reducing to a minimum-cost circulation problem.

However, for continuous type spaces the coupling is an infinite object and cannot
be directly manipulated algorithmically. If one relaxes the welfare improvement
property to approximate welfare improvement,

E
[
vali(ti, Āi(ti))

]
≥ E

[
vali(ti,Ai(ti))

]
− ε,
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then there is a workaround that consists of approximating the continuous distribu-
tion on T i by the empirical distribution of a finite random sample. In the replica-
surrogate matching reduction of [Hartline et al. 2011], one draws two m-tuples of
independent random samples from type space: a profile of replicas r1, . . . , rm and
a profile of surrogates s1, . . . , sm. A random one of the replicas rj is replaced with
the agent’s reported type ti (which, assuming truthful bidding, is drawn from the
same distribution as rj). Edge weights between replicas and surrogates are de-
fined by E

[
vali(rj ,Ai(sk))

]
as above, and a maximum-weight perfect matching is

computed. The type resampling procedure then finds the edge in the matching
that contains ti and outputs its opposite endpoint. This satisfies exact BIC, and it
satisfies ε-approximate welfare improvement if the number of samples, m, is large
enough for the empirical distribution of the replicas and surrogates to serve as a
good approximation of the true type distribution. For this purpose, m = ε−O(∆)

samples suffice, where ∆ roughly corresponds to the dimension of the type space;
see [Hartline et al. 2011] for details.

2.3 Correcting sampling error using strictly IC mechanisms

The replica-surrogate matching reduction is not computationally efficient because
computing the edge weights in the bipartite graph requires computing the interim
allocation function Ai, which in general is #P-hard. (It requires averaging over the
product of n− 1 other players’ type spaces.) One can estimate the edge weights by
sampling the allocation function’s output on random profiles of the other players’
types and averaging the results. This estimation inevitably involves some sampling
error, but the error tends to zero with the number of samples, m. Consequently the
replica-surrogate matching reduction using these estimated edge weights is ε-BIC
where ε → 0 as m → ∞, but is not necessarily BIC for any finite m. (See Lemma
4.1 of [Hartline et al. 2015] for an example.)

As noted earlier, for single-dimensional type spaces this difficulty is resolved in
[Hartline and Lucier 2010] by running a “blatantly monotone” mechanism with
some small probability, whose purpose is to correct the small incentives for misre-
porting caused by the error in estimating the edge weights vali(rj ,Ai(sk)). In the
case of the replica-surrogate matching reduction, it is more difficult to correct for
these errors. Ironically, the trouble is with small misreports, those in which the
reported type assigns almost the same value, to every outcome, as the true type. A
strictly incentive compatible mechanism has limited power to punish small misre-
ports, and this power is further limited by the fact that the strictly IC mechanism
is used only with small probability. On the other hand, since the function map-
ping the estimated edge weights to a maximum-weight matching is discontinuous,
small misreports that cross such a discontinuity can greatly affect the mechanism’s
outcome distribution. The problem is analogous to the problem of overfitting in
machine learning, and the solution is the same in both cases: regularization. Hart-
line et al. [2015] modify the objective function of the maximum-weight matching
problem by adding a strongly concave function that promotes outcome distribu-
tions that balance probabilities among many alternatives. The result is that the
outcome distribution varies slowly as a function of an agent’s reported type, which
limits the potential benefit of small misreports. When the type space is finite, it
is possible to construct a strictly IC mechanism that penalizes misreports strongly
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enough to correct these incentive constraint violations.

2.4 A barrier at dimension two

The story of progress up to this point may give the impression that a black-box
reduction from BIC mechanism design to algorithm design would inevitably exist
for multi-dimensional continuous type spaces as well. Actually, there was a good
reason to doubt the existence of such a reduction. All of the previously described
reductions tolerated small errors in estimating interim allocation functions, and
corrected those errors by mixing in a strictly IC mechanism with small probability.
The reason this works is that when the type space is finite or one-dimensional,
any mechanism whose allocation function is sufficiently close to IC can be made
perfectly IC by adding a strictly IC allocation function. This is no longer the case
when the type space has two or more dimensions.1

To explain why, it is helpful to specialize to the case when there are n outcomes
and type space is an open subset of Rn, with the n components of a type vector rep-
resenting the agent’s valuations for the n outcomes. An interim allocation function,
mapping types to distributions over outcomes, can thus be encoded as a function
from Rn to itself. When this function is differentiable, its partial derivatives form
a square matrix called the Jacobian, and a twice-differentiable allocation function
is truthful if and only if its Jacobian matrix is symmetric and positive semidefinite
(PSD) at every point of the type space [McAfee and McMillan 1988]. Randomiz-
ing between one mechanism and a second, strictly IC, mechanism has the effect of
taking a convex combination of the first mechanism’s Jacobian with a symmetric
positive definite matrix. If the first mechanism’s Jacobian matrix is symmetric but
not PSD, this operation can make it PSD. But if the first mechanism’s Jacobian
is asymmetric, then combining it with a symmetric positive definite matrix will do
nothing to fix the asymmetry. This issue does not arise unless the dimension of the
type space is at least two, because an n-by-n matrix cannot be asymmetric unless
n ≥ 2.

Thus, extending the existing black-box reduction methods to accommodate multi-
dimensional continuous type spaces requires coming up with a type resampling
procedure that, when composed with the black-box allocation function, has a sym-
metric Jacobian matrix. Given that we can only evaluate the allocation function
by sampling, and that the set of symmetric n-by-n matrices has measure zero when
n ≥ 2, it was not clear a priori whether any such procedure would exist. The key to
overcoming this barrier was to incorporate, and extend, a family of exact sampling
methods developed in the applied probability literature on Bernoulli factories. The
next section details these ideas.

3. EXPECTATIONS FROM SAMPLES AND BERNOULLI FACTORIES

One way of looking at the replica-surrogate matching reduction of [Hartline et al.
2011] for a fixed agent i is by considering a different auction where there exists a
buyer for each replica and an item for each surrogate. If the buyer j has type rj ,
define her value for the item k to be E

[
vali(rj ,Ai(sk))

]
. Note that as before the true

1Here, and for the remainder of this subsection, we abuse terminology by calling an allocation
function IC if it is equal to the interim allocation function of a BIC mechanism.
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agent i is indeed a random one of these buyers. Now, the reduction in [Hartline et al.
2011] simply runs an incentive compatible social welfare maximizing mechanism for
this auction problem, also known as the VCG mechanism, and re-samples the true
agent’s type according to the matching selected by the VCG allocation. As long
as this mechanism is incentive compatible the final reduction is exact BIC, and
as long it preserves the maximum social welfare (either exactly or by an additive
loss ε per-replica) the final reduction satisfies ε-approximate welfare improvement
per-agent for large enough m, as stated earlier.

3.1 Sampling a cycle monotone perfect matching

As a workaround to not calculate the interim allocation rule, our paper [Dughmi
et al. 2017] looks at a relaxed problem in which we only need to sample a perfect
matching, rather than calculating the expected values for replica-surrogate edges
and computing the maximum-weight perfect matching. Moreover, we need our
sampling procedure to output a randomized matching satisfying three properties:

(1) its social welfare loss per-replica is bounded by an additive ε in expectation;

(2) it is exactly cycle monotone (truthfully implementable with some payments);

(3) given sampling oracles {vali(rj ,Ai(sk))}j,k, it can be sampled efficiently.

Given such a sampling procedure, we can also compute the truthful payments
implicitly in polynomial time by using the result of [Babaioff et al. 2015]. This then
gives us a polynomial time reduction that is exact BIC and satisfies ε-approximate
welfare improvement relative to the ideal reduction of [Hartline et al. 2011] per-
agent (which already has a welfare loss bounded by ε relative to the allocation
algorithm A for each agent).

3.2 Expectations from Samples

The problem of sampling an exactly cycle monotone perfect matching is an ex-
ample of our expectations from samples computational model. This model calls
for sampling a distribution that is a precise function of the expectations of some
random inputs, which themselves are given by sample access. Formally, let f :
[0, 1]m → ∆(X), where X is an abstract set of outcomes (matchings, in our ex-
ample). We say an algorithm implements f from samples if, when given sample
access to random variables v1, . . . , vm with unknown expectations µ1, . . . , µm, its
output is distributed precisely as f(µ1, . . . , µm). In our matching problem, we seek
a function f which is approximately optimal for the max-weight matching problem,
is exactly cycle monotone, and is implementable from samples.

3.3 Single-agent multiple-urns

Our algorithm for sampling a cycle-monotone perfect matching is built on a solution
to a simpler problem, also in the expectations from samples model. In this problem,
which we call single-agent multiple-urns, there is a single agent who needs to be
assigned to one of the m different urns. For a given agent type t, every urn i has
an associated distribution Di(t) over [0, 1]. Assigning the agent to urn i generates
a value Vi(t), where Vi(t) , Ev∼Di(t)[v]. The objective is to design a polynomial
time incentive compatible (or in other words truthful) mechanism with a welfare
loss bounded by ε relative to the maximum welfare, i.e. maxiVi(t).
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The main restriction in the single-agent multiple-urns that makes it challenging
is that we assume the auctioneer does not know the urn valuation functions Vi(t),
and only has access to sampling oracles Di(s) for every urn i and type s. From
the above description, it is clear that single-agent multiple-urns is essentially the
matching problem when there is only one replica. As we show in §4, the solution
to this problem is also the main building block for designing the perfect matching
sampling procedure that satisfies (1),(2) and (3).

It is tempting to try the first candidate solution that comes to mind; assigning
the exact maximum value urn (and charging no money). This is clearly truthful.
However, it is not hard to see we cannot implement this allocation rule with only
samples from {Di(s)}, no matter how many samples we take. In other words, the
arg-max function is not exactly implementable in the expectations from samples
model. The good news is that this is not the only truthful allocation. In particular,
it is well-known that one can penalize deterministic allocations such as the arg-
max function by regularizing the welfare objective, and one still gets a truthful
allocation. In the mechanism design literature, such allocation functions are often
called affine maximizers. If the regularizer takes values between 0 and ε, the welfare
is approximately preserved with at most ε loss. Then, we ask the following question:
is there a member of the family of maximum regularized-welfare allocations that
can be sampled by only efficiently sampling from oracles {Di(t)}, where t is the
truthful type?

The key technical idea we use to answer this question is generalizing and incor-
porating Bernoulli factories [Keane and O’Brien 1994;  Latuszyński 2010]. We next
introduce this tool and explain its applications in solving relevant questions in the
expectations from samples computational model. We will return to our mechanism
design problem afterward, to see how to apply these solutions.

3.4 Bernoulli factories and races

The Bernoulli factory problem, introduced in [Keane and O’Brien 1994], is the
following. Suppose you have access to a coin with unknown bias p. Your task is to
sample from a new coin with bias f(p) for a given function f : [0, 1]→ [0, 1], given
access to as many samples as desired (hopefully not many) from the original coin.
As some clarifying examples, for f(p) = p2 one can flip the coin twice, and outputs
a heads if both coin flips are heads, and tails otherwise. Another example is the
Bernoulli factory for f(p) = E

[
pX
]
, when X is a random variable over N. To do

this, realize X first, then flip the coin X times, and finally output heads if all coin
flips are heads, and output tails otherwise.

The question of existence of Bernoulli factories has been the main subject of
interest in this literature. In particular, [Keane and O’Brien 1994] provide necessary
and sufficient conditions for f under which a Bernoulli factory exists and [Nacu and
Peres 2005] suggest an algorithm for simulating an f(p)-coin based on polynomial
envelopes of f . The canonical challenging problem of Bernoulli factories – and a
primitive in the construction of more general Bernoulli factories – is the Bernoulli
doubling problem: f(p) = 2p for p ∈ (0, 1/2). See [ Latuszyński 2010] for a survey
on this topic. The multivariate version of Bernoulli factory is also studied. One
example is linearly mixing the coins [Huber 2015], e.g. sampling a coin with bias
f(p1, p2, p3) = p1 + p2 + 0.5 · p3 given pi-coins for i = 1, 2, 3. In particular, by
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the Bernoulli doubling result of [Nacu and Peres 2005], it is not hard to see if
p1 + p2 ∈ [0, 1− δ] then summing two coins can be done with only O(1/δ) samples.

To apply the idea of Bernoulli factory to the problem of sampling cycle monotone
allocations, we generalize Bernoulli factories to the random selection from samples
problems in our paper [Dughmi et al. 2017]. In a random selection from samples
problem, a set of elements is given. Moreover, a coin with unknown bias pi is
given for each element i. The objective is to sample an element from a distribution
f(p1, . . . , pm) over elements, given only access to the pi-coins as sampling oracles.

Two interesting examples of random selection from samples problems are distri-
butions fi = pi/

∑
j pj , i.e. linear weights, and fi = eλpi/

∑
j e
λpj , i.e. exponential

weights. The algorithm that solves the former is simple and natural: pick a coin at
random and flip it, if the coin flips heads pick it, and otherwise repeat the process.
We call this algorithm the Bernoulli race. For the latter problem, note that for
X drawn from a Poisson distribution with parameter λ we have E

[
pX
]

= eλ·(p−1).
So, one solution would be pre-processing the coins using the Bernoulli factory for
eλ(p−1) first (as described earlier), and then running a Bernoulli race for these
exponential coins. We call this algorithm the exponential Bernoulli race.

3.5 Entropy regularization and fast exponential Bernoulli race

Back to the single-agent multiple-urns problem, remember that our goal was sam-
pling from an allocation, i.e. a distribution q = (q1, . . . , qm) over the urns, that
is also a regularized welfare maximizer. Given that we know how to do an expo-
nential Bernoulli race, one appealing idea would be to penalize the welfare with a
negative entropy regularizer (−1/λ) ·H(q) = 1/λ ·

∑
i qi log(qi), for λ = log(m)/ε.

In this way, the optimal allocation q∗ will have a loss bounded by ε as desired,
because the entropy is bounded by log(m), and q∗i = eλVi(t)/

∑
j e
λVj(t), which can

be implemented by the exponential Bernoulli race given access to coins with biases
{Vi(t)}i∈[m]. Recall that we have sample access to distributions {Di(t)}i∈[m] whose
expectations are {Vi(t)}i∈[m], and we can convert those to Bernoulli distributions
with the same expectations.2

There is only a caveat regarding the running time. It is not hard to see that the
running time of exponential Bernoulli race is proportional to the inverse of sum
of terms of the form eλ(Vi−1). Now if all the expected values have a constant gap
from 1, the running time will be exponential in λ. To make this race fast, a key
observation is that the distribution q∗ is invariant to a uniform additive shift to
all of the Vi’s. Therefore, here is a technical trick that can make this algorithm
fast: by sampling from the coins and performing empirical estimation, simulate a
boosting coin with bias L such that maxi{Vi + L} ∈ [1 − O(δ), 1 − δ] for δ = 1/λ.
Now, pre-process all the input coins by mixing them with the boosting coin, which
guarantees there always exists a coin with boosted bias ≈ 1. This forces the race
to terminate quickly, causing the fast Bernoulli race to solve the problem in time
polynomial in 1/ε and m.

2Given sample access to a distribution D supported on [0, 1], we sample a Bernoulli distribution
with the same expectation as follows: draw X ∼ D, then output a draw from Bern[X].
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4. PUTTING THE PIECES TOGETHER

We can now describe how our paper [Dughmi et al. 2017] applied the solution of the
single-agent multiple urns problem to sample a welfare preserving cycle monotone
perfect matching. The first tempting idea to try is simple: what if we go over
the replicas one by one, run the fast exponential Bernoulli race for the current
replica over remaining unmatched surrogates to sample one surrogate, and then
assign the replica to this surrogate? This perfect matching is truthful per-replica
and is therefore a cycle monotone matching. However, this algorithm is almost the
greedy algorithm (i.e. going over replicas one by one, and adding the maximum-
weight unmatched edge incident to every replica), which is only a constant factor
approximation to the maximum-weight perfect matching.

On the positive side, if we navigate the greedy algorithm using the optimal dual
solution of the linear program for the maximum-weight perfect matching as a com-
pass, greedy will find the optimal solution. This navigation can be done by shifting
the value of edges incident to a replica by the optimal dual variables of the corre-
sponding surrogate vertices and then running greedy. Yet, we do not have access to
the optimal dual solution and we do not have access to an exact arg-max function.
We need to calculate the optimal dual solution (in a truthful way) and we need to
only use our efficient sampling oracle for the exponential weights (i.e., the fast ex-
ponential Bernoulli race), which is essentially a randomized smooth approximation
to the arg-max function.

4.1 Entropy regularized perfect matching

The right way of combining the above primal-dual ideas is by considering a replica-
surrogate matching mechanism that maximizes the welfare when penalized with
the negative entropy regularizer. Let Vj,k , E

[
vali(rj ,Ai(sk))

]
, let xj,k be the

probability that replica j gets assigned to surrogate k, and let PB be the perfect
matching polytope. We then consider this convex program:

max
{xj,k}

∑
j,k
xj,k Vj,k − 1

λ

∑
j,k
xj,k log xj,k,

s.t. x ∈ PB .

It is not hard to see that the optimal solution to this program would have the form

of exponential weights, i.e. x∗j,k = eλ·(Vj,k−α∗k)/
∑
k′ e

λ·(Vj,k′−α
∗
k′), where α∗ is the

optimal Lagrangian dual vector of the above concave program. If we know this
optimal dual solution up front, we can efficiently sample from distributions x∗j for
each replica independently. To do so, roughly speaking, we first mix each coin (j, k)
with a coin 1−α∗k, and we then sample an edge using the fast exponential Bernoulli
race. This sampling procedure will output a cycle monotone perfect matching (or
can be converted into a perfect matching by small technical tweaks in the case of
conflicts at the surrogate side), and for large enough λ will satisfy ε-approximate
welfare improvement per-replica. The main caveat is that we do not have access
to α∗.
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4.2 Many-to-one perfect matchings

The first technical ingredient we add in [Dughmi et al. 2017] to overcome the
problem of not knowing α∗ is considering many-to-one perfect matchings instead.
In this case, we have B ·m replicas that need to be assigned to m surrogates, where
each surrogate has capacity B. The ideal model reduction of [Hartline et al. 2011]
still holds under this modification, because per-replica welfare can only increase
for the maximum-weight perfect many-to-one matching. However, this will help us
to estimate the optimal dual solution by sacrificing ε fraction of the replicas, and
calculating the dual for the sub problem restricted to these replicas (with budgets
scaled to ε · B). These replicas need to be sampled uniformly, so that we have an
unbiased estimator.

Here is how we may want to implement this. We shuffle the replicas randomly,
we look at them one by one in an online fashion (basically, we simulate an online
problem), and consider the first ε fraction for dual estimation. It is pretty well-
known in the online matching literature, e.g. [Agrawal et al. 2009; Devanur et al.
2011; Badanidiyuru et al. 2013], that this approach combined with the greedy
algorithm will produce a near-optimal B-to-1 perfect matching for large enough
B (a polynomial in 1/ε and m). This is almost what we want, with the small
missing piece that the fast exponential Bernoulli race cannot implement the greedy
allocation exactly, as it samples from the exponential weights distribution rather
than outputting the maximum weight edge.

4.3 Online stochastic convex optimization

The last technical ingredient we use in [Dughmi et al. 2017] to fill the missing
gap in §4.2 is to incorporate primal-dual techniques that solve online stochastic
convex optimization, e.g. in [Chen and Wang 2013; Agrawal and Devanur 2015],
rather than the approach suggested in §4.2. The main idea is basically learning
the optimal Lagrangian dual α∗ by applying a black-box no-regret online learning
algorithm. In fact, the optimal dual is the minimizer of the convex Lagrangian dual
function (which in our case is basically a linear function that is sum of the allocation
slacks on the surrogate side), and this fact can be used to apply a no-regret learning
algorithm for online convex optimization (or even online linear optimization in our
case) to learn the dual.

We start from the all-zero vector for the dual, and once we process a replica i we
update the dual variables by sending a query to the update rule of the no-regret
learning algorithm. We then use this updated dual α(i) to pre-process the coins
(i, j) for all surrogates j as described in §4.1. We can then use the fast exponential
Bernoulli race over these shifted coins to sample the next edge. However, we still
need to avoid violating the budgets on the surrogate side of the bipartite graph,
so that the algorithm outputs a perfect B-to-1 matching. In [Dughmi et al. 2017],
this is achieved by running the fast exponential Bernoulli race for each replica only
over surrogates with non-zero remaining budget. This procedure also samples a
cycle monotone matching. Moreover, by using standard techniques introduced in
[Chen and Wang 2013; Agrawal and Devanur 2015], we can analyze this algorithm
and show that for sufficiently large B, polynomial in m and 1/ε, the welfare loss is
bounded by ε per-replica.
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4.4 Final reduction

To just put the pieces together, in [Dughmi et al. 2017] we develop an online algo-
rithm for the entropy regularized replica-surrogate matching problem under random
order, and we then sample from this algorithm truthfully by the fast exponential
Bernoulli race per-replica. The final reduction is polynomial time in m and 1/ε,
and will sample a cycle monotone perfect B-to-1 matching whose per-replica welfare
loss is bounded by ε. We then resample the agent’s type by finding the edge in the
sampled B-to-1 matching that contains the agent’s true type (on the replica side)
and outputting the surrogate type at the opposite endpoint of this edge. We repeat
the same procedure for all agents to obtain a profile of surrogate types which is fed
into the black-box allocation function to yield the mechanism’s outcome. To bound
the total welfare loss (summed over all agents) by ε, we scale the per-replica wel-
fare loss from ε down to ε/n; this scaling inflates the running time by an additional
poly(n) factor. Finally, we can compute payments that combine with this alloca-
tion procedure to yield a BIC mechanism using the implicit payment computation
method of [Babaioff et al. 2015].

5. CONCLUSION

In this letter, we surveyed the line of work on black-box reductions in Bayesian
mechanism design. We briefly explained how techniques and tools in the expec-
tations from samples computational model are applied in [Dughmi et al. 2017] to
achieve an exact BIC reduction with only a negligible additive loss in the expected
social welfare. While the existence of such a reduction is good news for Bayesian
mechanism design, there are limitations that are mostly unavoidable.

(1) Beyond expected social welfare: It is tempting to try converting an arbitrary
algorithm for an optimization problem into a computionally efficient Basyesian
truthful mechanism. Interestingly, this is not possible for all optimization objec-
tives. In particular, Chawla et al. [2012] show that no black-box reduction is possible
for the objective of makespan, even if we only require Bayesian truthfulness and an
average-case performance guarantee. This precludes extending our result beyond
the expected-welfare objective in a general fashion.

(2) Exponential dependence on dimension: Notably, the reduction in [Dughmi
et al. 2017] is a fully polynomial time approximation scheme to the reduction of
[Hartline et al. 2011]. However, the running time of [Hartline et al. 2011] has
exponential dependence on ∆, where ∆ roughly corresponds to the dimension of
the type space. Therefore, our reduction in [Dughmi et al. 2017] also suffers from
the same exponential dependence. Intuitively, this seems to be unavoidable for
reductions that can only access the type space by sampling and can only access the
outcome space by calling the allocation function on sampled type profiles.

We conclude with some open questions. The first natural question, directly
related to the second limitation above, is to determine whether or not the ex-
ponential dependence on ∆ in the black-box reduction is unavoidable. Are there
black-box reductions whose running time exhibits a milder dependence on the struc-
ture of the type space? Another interesting question is to find more connections
between Bayesian mechanism design and the expectations from samples computa-
tional model. Hopefully, these connections will lead to finding simpler or compu-
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tationally more efficient reductions for specific environments, e.g. combinatorial
auctions.
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Dobzinski, S. and Vondrák, J. 2016. Impossibility results for truthful combinatorial auctions

with submodular valuations. J. ACM 63, 1, 5:1–5:19.

Dughmi, S., Hartline, J. D., Kleinberg, R., and Niazadeh, R. 2017. Bernoulli factories and

black-box reductions in mechanism design. In Proc. 49th Annual ACM Symposium on Theory

of Computing, (STOC 2017). 158–169.
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