
Calibration through the Lens of Indistinguishability

PARIKSHIT GOPALAN

Apple

and

LUNJIA HU

Harvard University

Calibration is a classical notion from the forecasting literature which aims to address the question:

how should predicted probabilities be interpreted? In a world where we only get to observe (dis-
crete) outcomes, how should we evaluate a predictor that hypothesizes (continuous) probabilities

over possible outcomes? The study of calibration has seen a surge of recent interest, given the

ubiquity of probabilistic predictions in machine learning. This survey describes recent work on the
foundational questions of how to define and measure calibration error, and what these measures

mean for downstream decision makers who wish to use the predictions to make decisions. A uni-

fying viewpoint that emerges is that of calibration as a form of indistinguishability, between the
world hypothesized by the predictor and the real world (governed by nature or the Bayes optimal

predictor). In this view, various calibration measures quantify the extent to which the two worlds

can be told apart by certain classes of distinguishers or statistical measures.
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tics
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1. INTRODUCTION

Prediction is arguably the ubiquitous computational task of our time. Every day,
a remarkable amount of computational resources are invested in the prediction of
various probabilities, whether it is a language model trying to answer a user’s am-
biguous query or a recommendation engine trying to predict which product/profile
to show a user. These automated predictions affect nearly every aspect of our lives,
be it social, medical or financial. What makes prediction different from more classi-
cal computational tasks (such as sorting numbers or computing max-flows) is that
there is no well-defined notion of what constitutes correctness.
To explore this issue in greater detail, let us consider the simplified setting of

binary prediction, where nature is modeled as a joint distribution D∗ over attributes
x drawn from a domain X and labels y ∈ Y. In this article, we will mainly focus on
the setting Y = {0, 1} of Boolean labels.1 We denote the marginal distribution over
X by D∗

X , and Y by D∗
Y . A predictor is a function p : X → [0, 1]. The ground truth

in this setting is represented by the Bayes optimal predictor p∗(x) = E[y∗|x = x].

1We use boldface for random variables, thus x is random variable drawn from X whereas x ∈ X
is a point in the domain.
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The obvious formulation of correctness in prediction might be to learn p∗. The
challenge is that we never see the values of p∗ itself, our only access to it is via the
labels y∗ which satisfy E[y∗|x] = p∗(x). So the obvious formulation of correctness,
as finding p which is close to p∗ under some suitable measure of distance, will
not work. There are (at least) two different and complementary approaches: loss
minimization and calibration.

1.1 Loss minimization

In loss minimization, we choose a loss function ℓ : {0, 1} × [0, 1] → R, and a
hypothesis class of predictors P = {p : X → [0, 1]}, and aim to find the predictor
that minimizes

p = argmin
p′∈C

E
(x,y∗)∼D∗

[ℓ(y∗, p′(x))].

In essence, we use the labels y∗ as a proxy for p∗, while ℓ plays the role of a
distance measure. But it turns out that (for any proper loss) we indeed find the
predictor in our family P that is closest to p∗. This is a consequence of the bias
variance decomposition. Taking the example of squared loss ℓ(y, v) = (y− v)2, the
decomposition tells us that for any predictor p, 2

E
D∗

[(y∗ − p(x))2] = E
D∗

[(p(x)− p∗(x))2]︸ ︷︷ ︸
bias

+ E
D∗

[(y∗ − p∗(x))2]︸ ︷︷ ︸
variance

.

Note that the variance is a property of p∗, independent of p.
Loss minimization is a simple yet immensely powerful paradigm that powers much

of contemporary machine learning. But is it a satisfactory notion of correctness for
prediction tasks? Here are some questions to consider:

—Imagine that a decision maker is using a predictor to make decisions that min-
imize their own loss function. This loss may differ from the one used to train
the model, and might differ across various decision makers. For instance, we
could use forecasts about rain to decide whether or not to carry an umbrella, to
decide whether to have a party outdoors or indoors, or whether to turn off the
sprinklers. Each of these has its own loss function. Say our loss for carrying an
umbrella when it does not rain is 0.1, and for not carrying an umbrella when
it rains is 0.9. The optimal strategy here is to carry an umbrella on days when
p∗(x) ≥ 0.1. Now suppose that the predictor p we have access to is not Bayes
optimal. How do we make decisions using this predictor? Should we carry an
umbrella whenever p(x) ≥ 0.1, just like with the Bayes optimal predictor, or
should we make decisions differently?

—We know that the squared loss decomposes into bias and variance, but we have
no way of knowing how large each of these are. If we suffer large squared loss,
it could because nature is inherently random (e.g p∗ is often close to 1/2), or
because nature is deterministic but sufficiently complex that it looks random to

2It is easy to prove a similar statement about any proper loss, and a little harder to prove it about
arbitrary losses. But the takeaway remains the same: by minimizing loss over a family P, we find

the best approximation to p∗ from P under a suitable notion of distance tailored to the loss.
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our hypothesis class P. Loss minimization does not distinguish between these
scenarios.

—Suppose we wish to predict the probability of rain tomorrow, and the model p
found by minimizing squared loss gives a 60% chance of rain. How should we
interpret this prediction? Is it possible that although p minimizes expected error
globally, it is not particularly good at prediction for certain types of days (like
days in September)? Concerns like these arise naturally in the context of fair
predictions for subgroups (see the discussion on multicalibration in Section 1.4).

The question of what a prediction really guarantees naturally leads us to calibration.

1.2 Calibration

Calibration is a notion of correctness that focuses on ensuring that predicted proba-
bilities align with actual outcomes. Intuitively, on days when a calibrated predictor
predicts a 60% chance of rain, it rains 60% of the time. Formally, we can define
perfect calibration as follows:

Definition 1.1. The predictor p : X → [0, 1] is perfectly calibrated under the
distribution D∗ if for every v ∈ Image(p), it holds that E[y∗|p(x) = v] = v.

A key property of calibration is that it simplifies downstream decision making.
For instance, let us return to the problem of using the forecast about rain to decide
whether or not to carry an umbrella, where our loss for carrying an umbrella when
it does not rain is 0.1, and for not carrying an umbrella when it rains is 0.9. Now
suppose that the predictor p we have access to is not Bayes optimal, but it is
calibrated. If we are basing decisions solely on p, then the optimal strategy is still
to carry an umbrella on days when p(x) ≥ 0.1. The expected loss we would suffer
is exactly what we would have suffered if our predictor were Bayes optimal.
This naturally motivates an alternate view of calibration as a notion of correct-

ness for predictors based on indistinguishability from the Bayes optimal, which
will be an important theme in this survey. This view is inspired by the outcome
indistinguishability framework of [Dwork et al. 2021].3

To every predictor p : X → [0, 1], we can associate a distribution Dp on pairs
(x,yp) where the marginal on x is D∗

X and where E[yp|x] = p(x). The Bayes opti-
mal predictor for Dp is p. Perfect Calibration requires that the joint distributions
(p(x),yp) and (p(x),y∗) be identical.

Lemma 1.2 Perfect calibration as indistinguishability. The predictor p :
X → [0, 1] is perfectly calibrated under the distribution D∗ iff the joint distributions
J∗ = ((p(x),y∗)) and Jp = (p(x),yp) on [0, 1]× {0, 1} are identical.

Let us see why this is true. Since the marginal distribution of x is the same
in both cases, the distribution of p(x) is also the same. In essence, we require
that the distributions y∗|p(x) and yp|p(x) be identical. Since the latter is the
Bernoulli distribution with parameter p(x), we require the same for y∗|p(x), which

3That work does not consider calibration per se, it instead considers more general notions such
as multicalibration from [Hébert-Johnson et al. 2018]. In the context of calibration, it is plausible

that this indistinguishability viewpoint predates it, though we have not found a reference.
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is the standard definition. This guarantee conditional on each prediction is the key
strength of calibration as a prediction guarantee.4

The indistinguishability property asserts that p(x) be a plausible explanation
for the observations y∗ given x, in that the conditional distribution of y∗|p(x)
is consistent with the hypothesis that p(x) is the Bayes optimal predictor. This
indistinguishability property is desirable in machine learning, where we often try
to model complicated processes (like the likelihood of a medical condition) and are
unlikely to find the true Bayes optimal. Calibrated predictors are considered more
trustworthy, whereas a predictor that is not calibrated will fail some basic tests:
the probability of the label being 1 conditioned on p(x) = v is not v.
In the bigger picture, the notion of indistinguishability has played a central role

in several disciplines within theoretical computer science, cryptography and pseu-
dorandomness to name just a couple, indeed its roots go back to the Turing test.
Viewing calibration as a form of indistinguishability lets us draw on ideas from
those areas when we seek to define approximate calibration or generalize our no-
tions beyond the binary classification setting.

1.3 From perfect to approximate calibration

Perfect calibration is a clean abstraction, but predictors trained and used for pre-
diction tasks in the real world are seldom perfectly calibrated. For calibration to be
a useful notion, we need to define what it means for a predictor to be approximately
(but not perfectly) calibrated, and we need efficient methods to measure calibration
error. How to do this in a principled manner is the main focus of this article.
There are many desiderata that one might hope a notion of approximate calibra-

tion satisfies:

(1) It should preserve the desirable properties of calibration, such as indistinguisha-
bility and simple downstream decision making, in some approximate sense.

(2) It should be efficient to measure the calibration error of a given predictor, just
from black box access to samples of the form (p(x),y∗), both in terms of sample
complexity and computational complexity. In an online setting (to be defined
shortly), we might wish for our notion to have low-regret algorithms.

(3) The notion should be robust to small perturbations in the predictor. A tiny
change to a calibrated predictor should not result in a predictor with huge
calibration error. For instance, changing the days forecast from 60% to 59.999%
should not result in wild swings in the calibration error.5

(4) The notion should extend beyond binary classification, to multiclass labeling
and regression, while maintaining properties like efficiency.

Achieving all of these properties is not easy. The classical notion of calibration
error, which is the expected calibration error or ECE, only satisfies property (1)
above; we will discuss this in more detail in Section 3. An active line of recent

4Of course, there might be a different calibrated predictor that only puts the chances of rain at

30%. There is no contradiction because the level sets of the predictors over which we average are

different in the two cases.
5This is especially desirable from a machine learning perspective, where the lower order bits of

prediction are considered insignificant and typically disregarded in low-precision arithmetic.
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research has yielded a rich theory of approximate notions of calibration, together
with algorithms for computing them efficiently in various models. Yet, to date,
there is no single notion that satisfies all four desiderata mentioned above!
Perhaps this is too much to hope for, since some of these desiderata (eg. ro-

bustness and low-regret algorithms) arise from different motivating scenarios. But
a clear takeaway from this body of research is that approximate calibration is
surprisingly challenging to define and measure. The key technicality in defining
approximate calibration error comes from conditioning. Every definition of calibra-
tion involves some form of conditioning on predictions. While this conditioning is
simple for perfectly calibrated predictors, it is far trickier for predictors that are
not perfectly calibrated, since predictions are real-valued.
In this survey, we will highlight how the indistinguishabilty viewpoint on calibra-

tion guides us in formulating what approximate calibration should mean. At a high
level, there are two approaches to this task:

—Limit the set of distinguishers : Rather than require J∗ and Jp be identical,
we ask that they look similar to a family W of distinguishers. The calibration
error is measured by the maximum distinguishing advantage achieved over all
distinguishers in W . This approach is directly inspired by cryptography and
pseudorandomness.

—Use a divergence/distance on distributions: Since J∗ and Jp are both dis-
tributions on the domain [0, 1]×{0, 1}, we can use distance measures/divergences
on probability distributions (e.g., total variation, earthmover) to measure the dis-
tance between them, and use this as our measure of the calibration error. As we
will see, this view relates to a quantification of the economic value of calibration
from the perspective of downstream decision making.

These approaches lead to a number of calibration error measures that we will
explore in more detail in this article, and which have many advantages over ECE
and other traditional calibration measures. We will analyze smooth calibration
error [Kakade and Foster 2008], which satisfies properties (1-3) but not (4). It also
corresponds to an intuitive notion of approximate calibration, where the predictor
is close to some perfectly calibrated predictor in earthmover distance.
From the computational standpoint, the natural model in which to study cal-

ibration has been the online setting, where we measure the regret or calibration
error of our prediction strategy over T time steps.6 The classic work of [Foster
and Vohra 1998] showed that sublinear calibration error, as measured by ECE is
possible. The regret rate achieved in their work is O(T 2/3).7 It is known that

regret rates of O(
√
T ) or even Õ(

√
T ) are not possible for ECE [Qiao and Valiant

2021], and figuring out the optimal regret achievable is an active area of research
(see, e.g., [Dagan et al. 2025]). However, new notions of calibration, which we will
discuss in this survey, actually admit prediction strategies that achieve O(

√
T ) or

Õ(
√
T ) regret rates [Qiao and Zheng 2024; Arunachaleswaran et al. 2025; Hu and

Wu 2024].

6Note that the computational task of learning a calibrated predictor admits trivial solutions in
the offline model; for instance, one can always predict the expectation of the label.
7The regret rate is T times the calibration error on the uniform distribution over the T time steps.
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1.4 Limitations and generalizations

Calibration is clearly a desirable property for a predictor, but it has limitations,
and cannot be considered as a standalone notion of goodness for a predictor. We
ideally want predictors to have both good calibration and other properties like small
expected loss. We discuss these limitations below, and use this as motivation to
introduce the stronger notion of multicalibration [Hébert-Johnson et al. 2018], and
discuss how it addresses these limitations.

Calibration does not guarantee utility. There are many predictors that will satisfy
calibration, and we would not consider all of them to be equally informative or good.
For instance, the average predictor p̄ that always predicts the average label ED∗ [y∗]
is perfectly calibrated, as is the Bayes optimal p∗. Any reasonable loss function
would distinguish between these predictors, but calibration (by itself) does not.

Calibration gives guarantees on average over the entire population. In some appli-
cations, this might not be good enough. For instance, suppose we train a predictor
to predict the risk of a certain risk of disease for a patient. On examining the data,
we find that although the predictor is calibrated over the general population, it is
miscalibrated for patients with a certain medical history, who are a small fraction
of the dataset (so this does not affect the overall calibration error too much). We
would not trust such a predictor to make decisions for those patients.

Multicalibration. Multicalibration, introduced in [Hébert-Johnson et al. 2018], is
a strengthening of calibration. It requires that our predictions are calibrated, even
when conditioned on membership in a rich collection of demographic subgroups
C ⊆ 2X . Which subgroups to consider is an important consideration, which is
dictated by the data and computational resources available to the predictor. We
refer the reader to [Hébert-Johnson et al. 2018] for more details.
Although calibration by itself does not guarantee good loss minimization, mul-

ticalibration with respect to rich class of subgroups C does imply strong loss min-
imization. This was the key insight in the work of [Gopalan et al. 2022] which
introduced the notion of omniprediction. Omniprediction asks for a predictor that
is as good as benchmark class C not just for a single loss function, but for any
loss from a large family of loss functions. [Gopalan et al. 2022] shows a surpris-
ing connection between omniprediction with respect to a benchmark class C and
multicalibration with respect to C.
From the indistinguishability perspective, [Dwork et al. 2021] showed that multi-

calibration is equivalent to indistinguishability of the distributions (c(x), p(x),y∗)
and (c(x), p(x),yp) for all c : X → {0, 1} that lie in some family C of functions.
Beyond its original motivation in multigroup fairness, multicalibration has proved
to be tremendously powerful, finding applications to omniprediction [Gopalan et al.
2022], domain adaptation [Kim et al. 2022], pseudorandomness [Dwork et al. 2023],
and computational complexity [Casacuberta et al. 2024].

Organization of this survey. In Section 2, we consider expected calibration error
(ECE) and explore its weaknesses. In Section 3, we introduce weighted calibra-
tion measures which capture the notion of indistinguishability to limited classes
of distinguishers. This unifies several different notions of approximate calibration
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in the literature. In Section 4, we describe Calibration decision loss, which looks
at calibration from an economics perspective, through the eyes of a downstream
decision maker who wants to use the predictions of a predictor to optimize their
utility. We review the active area of research on online calibration in Section 5.
Given the number of calibration notions that we will encounter, a natural question
is whether there is some ground truth notion against which we can compare these
different notions. In Section 6, we define the distance to calibration, which pro-
poses a ground-truth notion of what approximate calibration ought to mean, and
show how smooth calibration shows up naturally in this setting. In the interest
of brevity, we omit most proofs from the survey. We direct the interested reader
to the arXiv for a fuller version of this article that includes full proofs and some
additional material.

2. EXPECTED CALIBRATION ERROR

We start with what is arguably the most popular metric for measuring calibration
error: the expected calibration error or ECE. We examine some of its shortcomings,
which will guide us in formulating other notions of approximate calibration.

Definition 2.1. The expected calibration error of a predictor p underD∗ is defined
as ECE(p,D∗) = E |E[y∗|p(x)]− p(x)]|.

Some notes on the definition of ECE:

—While perfect calibration requires E[y∗|p(x)] = p(x), ECE allows for some slack
in the equality, and measures the average deviation over all p.

—We have defined ECE as measuring the absolute deviation between E[y∗|p(x)]
and p(x). We could instead have used the square or the qth power for q ≥ 1 and
defined ECEq(p,D∗) = E[|E[y∗|p(x)]− p(x)|q]1/q. By the convexity of tq, ECEq

is an increasing function of q.

For a better understanding of ECE, we look at two alternative characterizations.
The first characterizes it in terms of the maximum inner product with a distin-
guisher b which is a bounded function on [0, 1].

Lemma 2.2. Let B = {b : {0, 1} → [−1, 1]} be the family of all bounded func-
tions. Then ECE(p,D∗) = maxb∈B EJ∗ [b(x)(y∗ − p(x))].

For two distributions D1,D2 on a domain X , we define

TV(D1,D2) = max
S⊆X

|D1(S)−D2(S)|.8

We state the second characterization in terms of total variation distance.

Lemma 2.3. We have ECE(p,D∗) = TV(J∗, Jp).

The trouble with ECE. At first glance, ECE seems to be a reasonable measure
of calibration error. However there are (at least) a couple of problems with it: it is
hard to efficiently estimate (even in the binary classification setting), and it is very
discontinuous. Thus it fails desiderata (2-4).

8When the space X is infinite, we must restrict S to be measureable, but we will ignore this and

other such subtleties.
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The computational difficulty stems from Lemma 2.2. Estimating the ECE is
equivalent to finding the best witness b ∈ B. This is essentially a learning prob-
lem over a class with infinite VC dimension. Indeed, one can show that sample
complexity of estimating ECE can be as large as Ω(

√
|X |). Ideally, we would like

to complexity to be independent of the domain size, and depending only on the
desired estimation error.
The continuity problems are hinted at by Lemma 2.3. While total variation

distance is a good distance measure for distributions over discrete domains, it is
not ideal for continuous domains. And our setting involving distributions over
predictions in [0, 1] is inherently continuous. As the next example illustrates, ECE
turns out to be highly discontinuous in the predictions of our predictor.

—Let D2 be the uniform distribution a two point space {(a, 0), (b, 1)}, where a is
always labeled 0 and b is labeled 1.

—Consider the predictor p0 which predicts 1/2 for both a and b. It is perfectly
calibrated, hence ECE(p0) = 0.

—For ϵ > 0, define the predictor pϵ where pϵ(a) = 1/2 − ϵ, pϵ(b) = 1/2 + ϵ. It is
easy to verify that ECE(pϵ) = 1/2− ϵ.

Think of ϵ being infinitesimally small but positive, so that pϵ is extremely close to
p0. Intuitively, pϵ is very close to being perfectly calibrated, it only requires a small
perturbation of the lower order bits. Yet, the ECE is close to 1/2 for pϵ, whereas
it is 0 for p0.
There are many ad-hoc fixes in practice that aim to get around these difficulties.

For instance, bucketed ECE divides the interval [0, 1] into b equal sized buckets,
rounds the predictions in each bucket (say to the midpoint) and then measures the
ECE of the discretized predictor. But [Blasiok et al. 2023a] observe that this results
in a bucketed ECE which oscillates between 0 and 1/2 − ϵ depending on whether
the number of buckets is odd or even!
Are our issues with ECE small technicalities or symptoms of a bigger problem?

We believe it is the latter. Assume you are training a predictive model, and you
measure its ECE and find it to be large. Is this something you should worry
about? Is your model truly miscalibrated (whatever that means)? Or is there an
infinitesimal perturbation of its predictions that will make it perfectly calibrated?
In general, there are sound reasons to prefer metrics that are reasonably smooth.
It is also important for estimation to be efficient in terms of both samples and
computation, which is not the case for ECE.

3. WEIGHTED CALIBRATION ERROR

In this section, we will explore notions of approximate calibration that only require
that J∗ and Jp look similar to a family W of distinguishers or weight functions.
This results in a general template called weighted calibration, which is parametrized
by the family W . Instantiating this notion with the family of bounded Lipschitz
functions, we derive the notion of smooth calibration [Kakade and Foster 2008].
We briefly describe some other notions of calibration from the literature that can
be viewed as instantiations of this template.
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3.1 Weighted calibration

Weighted calibration error [Gopalan et al. 2022] captures the extent to which a
collection of distinguishing functions are able to distinguish J∗ from Jp. Since
J∗ and Jp are both distributions over [0, 1] × {0, 1}, we consider distinguishing
functions f : [0, 1] × {0, 1} → [−1, 1]. Since the second argument to f is Boolean,
we can write f(v, y) = w(v)y + u(v). Hence,

E
J∗
[f(v,y∗)]− E

Jp
[f(v,yp)] = E

J∗
[w(v)y∗]− E

Jp
[w(v)yp] = E

J∗
[w(v)y∗]− E

Jp
[w(v)v]

= E
J∗
[w(v)(y∗ − v)]. (3.1)

where the first and third equalities hold because v is identically distributed under
J∗ and Jp, and the second is because E[yp|v] = v. This tells us that we can
limit ourselves to distinguishers of the form f(v, y) = w(v)y, and the distinguishing
advantage can be thought of as an expectation under the single distribution J∗

(Equation (3.1)). This leads to the following definition from [Gopalan et al. 2022].

Definition 3.1 Weighted calibration error [Gopalan et al. 2022]. Let W = {w :
[0, 1] → [−1, 1]} be a family of weight functions. The W -weighted calibration error
of the predictor p : X → [0, 1] is defined as

CEW (p,D∗) = max
w∈W

∣∣∣E
D∗

[w(p(x))(y∗ − p(x))]
∣∣∣ .

The definition of weighted calibration error suggests a natural computational
problem: the problem of calibration auditing for a weight family W . This is the
computational problem of deciding whether CEW (p,D∗) is 0 or exceeds α, given
access to random samples (p(x),y∗) from D∗. This problem turns out to be closely
related to agnostic learning for the class W , as shown by [Gopalan et al. 2024].

If we instantiate weighted calibration with W = B where B is the set of all
bounded functions introduced in 2.2, we recover ECE. But this also illustrates why
ECE is hard to compute efficiently: the set B has infinite VC dimension, hence it
cannot be learnt efficiently.
Note that we could have defined the weighted calibration error CEW as a function

of J∗, the joint distribution of (p(x),y∗), rather than the pair (p,D∗). We prefer
mentioning p explicitly for clarity, but it is important to note that CEW only
depends on J∗. Indeed, most common measures of calibration error and loss only
depend on the distribution of J∗. For instance, the cross-entropy loss and square
loss only depend on how labels and predictions are jointly distributed, not on
whether we are labeling images or tabular data; if we predict p(x) = 0.7 and
the label is 1, that fixes the loss suffered at x, regardless of the features x.

3.2 Smooth calibration

Smooth calibration, introduced by [Kakade and Foster 2008] is an instantiation
of weighted calibration that restricts the class of weight functions to Lipschitz
continuous functions. This ensures that small perturbations of the predictor do not
result in large changes in the calibration error.

Definition 3.2. Let L = {l : [0, 1] → [−1, 1]} denote the subset of 1-Lipschitz
functions from B. Define the smooth calibration error of the predictor p under the
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distribution D∗ as smCE(p,D∗) = CEL(p,D∗).

By only allowing Lipschitz weight functions, Smooth calibration ensures that the
calibration error does not change dramatically under small perturbations of the
predictor.9 Given predictors p1, p2 : X → [0, 1] and a distribution D∗ on X , let the
expected ℓ1 distance between them be

d(p1, p2) = E
D∗

[|p1(x)− p2(x)|].

Smooth calibration error is Lipschitz in this distance.

Lemma 3.3. For any weight family W ⊆ L, CEW (p,D∗) is 4-Lipschitz in d.

Returning to the example above with p0 and pϵ, restricting to Lipschitz distin-
guishers means that smooth calibration considers pϵ to also be well calibrated, since
its smooth calibration error is O(ϵ).
An alternate view of smooth calibration is in terms of earthmover distance be-

tween J∗ and Jp. Consider the ℓ1 metric on [0, 1]×{0, 1} where ℓ1((v, y), (v
′, y′)) =

|v − v′| + |y − y′|. For two distributions J, J ′ on [0, 1] × {0, 1}, we denote the
earthmover distance between two distributions under the ℓ1 metric as EMD(J, J ′).
Smooth calibration captures the earth-mover distance between J∗ and Jp.

Lemma 3.4. We have EMD(J∗, Jp)/2 ≤ smCE(p,D∗) ≤ EMD(J∗, Jp).

This lemma should be contrasted with Lemma 2.3, which characterizes ECE in
terms of the total variation distance.
We have defined smooth calibration error in terms of the family of 1-Lipschitz

distinguishers. But since an L-Lipschitz function for L > 1 can be made 1-Lipschitz
by rescaling the range by L, the calibration error can only increase by L even if we
allow L-Lipschitz distinguishers.

3.3 Other notions of weighted calibration

We have seen two notions of weighted calibration so far: ECE and smCE. Several
other calibration metrics that have been considered in the literature can be naturally
viewed as instances of weighed calibration. We list some of them below.

—Low-degree calibration [Gopalan et al. 2022] corresponds to the case where W =
Pd consists of degree d polynomials. This class is fairly Lipschitz (since polyno-
mials have bounded derivatives. The main attraction of this notion is that it is
efficient to computer, even in the multiclass setting.

—In Kernel calibration [Kumar et al. 2018; Blasiok et al. 2023a] the family of
weight functions lies in a Reproducing Kernel Hilbert Space. There are many
choices of kernel possible, such as the Laplace kernel, the Gaussian kernel or
the polynomial kernel, each of these results in distinct calibration measures with
their own properties.

9Note that Lemma 2.2 tells us that there exists a bounded function bϵ that explains the high ECE
for pϵ, specifically, bϵ(v) = sign(v − 1/2). This function is discontinuous near 1/2, which causes

the extreme sensitivity to perturbations.
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4. CALIBRATION ERROR FOR DECISION MAKING

In this section, we will explore a second approach to relaxing the definition of
perfect calibration, where rather than asking J∗ and Jp be identical, we require
them to be close when measured under a suitable divergence. This leads to another
important measure of the calibration error, the Calibration Decision Loss (CDL),
introduced recently by Hu and Wu [Hu and Wu 2024]. Underlying the notion of
CDL is a concrete and natural quantification of the economic value of calibration
from the perspective of downstream decision making.
We define the notion of CDL in Section 4.1 and discuss its alternative formulation

using Bregman divergences between J∗ and Jp in Section 4.3. A key tool we use
to prove this Bregman divergence formulation is a classic characterization of proper
scoring rules [McCarthy 1956; Savage 1971; Gneiting and Raftery 2007].

4.1 Calibration Decision Loss

The definition of the Calibration Decision Loss comes naturally when we look at
calibration through an economic lens, from the perspective of downstream decision
makers. What does calibration mean to a person who uses the predictions (e.g.
chance of rain) to make downstream decisions (e.g. take an umbrella or not)? We
will show that a calibrated predictor provides a concrete trustworthiness guaran-
tee to every payoff-maximizing downstream decision maker (Theorem 4.1). This
observation gives not only a characterization of perfect calibration, but also a nat-
ural way of quantifying the calibration error of a miscalibrated predictor, using the
payoff loss caused by trusting the (miscalibrated) predictor in downstream decision
making. This way of quantifying the calibration error leads exactly to Calibration
Decision Loss (Definition 4.2).
We start by formally defining decision tasks. A decision task T has two com-

ponents: an action space A and a payoff function u : A × {0, 1} → R. Given a
decision task T = (A, u), the decision maker must pick an action a ∈ A in order
to maximize the payoff u(a, y) ∈ R. Here, the payoff depends not only on the
chosen action a, but also on the true outcome y ∈ {0, 1} unknown to the deci-
sion maker. For example, if the outcome y ∈ {0, 1} represents whether or not it
will be rainy today, a natural decision task may have two actions to choose from:
A = {take umbrella,not take umbrella}. Each combination (a, y) of action and out-
come corresponds to a payoff value u(a, y) that may depend on the susceptibility
to rain and the inconvenience of carrying an umbrella.
Prediction enables decision making under uncertainty. While the decision maker

is unable to observe the true outcome y before choosing the action, we assume
that they are assisted by a prediction v ∈ [0, 1]. In the ideal case, the prediction
correctly represents the probability distribution of the true outcome. That is, the
outcome y follows the Bernoulli distribution with parameter v (denoted y ∼ v). To
maximize the expected payoff, the decision maker should choose the action

σT (v) ∈ argmax
a∈A

E
y∼v

u(a,y) (4.1)

in response to the (correct) prediction v. We call the function σT : [0, 1] → A the
best-response function. Throughout the section, we assume that each decision task
T = (A, u) is associated with a well-defined best-response function. That is, we
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focus on tasks T where the argmax in (4.1) is always non-empty.
In reality, predictions are seldom perfectly correct. It is thus unclear whether

applying the best-response function would still lead to optimal payoff. The following
theorem tells us that as long as the predictions are calibrated, the best response
function remains the optimal mapping from predictions to actions, allowing the
decision maker to trust the predictions as if they were correct.

Theorem 4.1 Calibrated Predictions are Trustworthy. Let D be a joint
distribution on X × {0, 1}. For any perfectly calibrated predictor p : X → [0, 1] and
any decision task T = (A, u), it holds that

E
(x,y)∼D

[u(σT (p(x)),y)] = max
σ:[0,1]→A

E
(x,y)∼D

[u(σ(p(x)),y)]. (4.2)

In other words, the maximum value of the expected payoff is attained when we choose
σ = σT . Conversely, if (4.2) holds for every decision task T , then the predictor p
is perfectly calibrated.

We defer the proof of Theorem 4.1 to Section 4.2 and discuss how it suggests a new
calibration measure. According to the theorem, if a predictor p is miscalibrated,
then the right-hand side of (4.2) is larger than the left-hand side for some decision
task T . The difference between the two sides is exactly the payoff loss incurred
by the decision maker who follows the best-response strategy σT assuming (incor-
rectly) that the predictions were calibrated. Thus, a natural measure of the level of
miscalibration is exactly this payoff loss. For a fixed decision task T , this payoff loss
is termed the Calibration Fixed Decision Loss (CFDL) [Hu and Wu 2024]. Taking
the worst-case payoff loss over all decision tasks T = (A, u) with bounded payoff
functions u : A → [0, 1], we get the Calibration Decision Loss (CDL).

Definition 4.2 Calibration Decision Loss (CDL) [Hu and Wu 2024]. Let D be a
joint distribution over X × {0, 1}. Given a predictor p : X → [0, 1], we define its
Calibration Fixed Decision Loss (CFDL) with respect to a (fixed) decision task
T = (A, u) as

CFDLT (p,D) := max
σ:[0,1]→A

E
(x,y)∼D

[u(σ(p(x)),y)]− E
(x,y)∼D

[u(σT (p(x)),y)].

We define the Calibration Decision Loss (CDL) of the predictor p as the supremum
of the CFDL over all decision tasks (A, u) where the payoff function u : A → [0, 1]
has its range bounded in [0, 1]:

CDL(p,D) := sup
T =(A,u),u:A→[0,1]

CFDLT (p,D).

As we will see when we prove Theorem 4.1 in Section 4.2, the CDL is zero if and only
if the predictor p is perfectly calibrated. If a predictor is not perfectly calibrated
but has a small CDL, any decision maker can still trust the predictor as if it were
calibrated without losing too much expected payoff. This holds because the CDL
is the supremum of the CFDL over all payoff-bounded decision tasks.

We note that in the definition of CDL, decision tasks are restricted to have a
bounded payoff function u : A → [0, 1]. This restriction is only for the purpose
of normalization: multiplying the payoff function by any positive constant changes
the corresponding CFDL by the same constant factor, whereas adding a constant
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to the payoff function does not change the CFDL. There is no further restriction
on the decision tasks beyond bounded payoff functions. In particular, the action
set A can have arbitrary (even infinite) size. A small CDL implies that trusting the
predictions will incur small payoff loss for all such decision tasks.

A natural question is how the CDL is related to other measures of the calibration
error. We will prove that the CDL is quadratically related to the ECE:

Theorem 4.3 [Kleinberg et al. 2023; Hu and Wu 2024]. Let D be a joint
distribution over X × {0, 1}. For any predictor p : X → [0, 1],

ECE(p,D)2 ≤ ECE2(p,D)2 ≤ CDL(p,D) ≤ 2ECE(p,D) ≤ 2ECE2(p,D). (4.3)

Moreover, the quadratic relationship between CDL and ECE shown in Theorem 4.3
is tight (up to lower order terms): for any ε ∈ (0, 1/10), there exist two pairs
(p1,D1), (p2,D2) such that

ECE2(p1,D1) = ε, CDL(p1,D1) = 2ε;

ECE(p2,D2) = ε, CDL(p2,D2) ≤ ε2 +O(ε3).

We defer the proof of Theorem 4.3 to Section A.7. Here we briefly describe the two
tight examples. The first example (p1,D1) is very simple. For (x,y) ∼ D1, we draw
y ∈ {0, 1} from the Bernoulli distribution with parameter 1/2+ε, independent of x.
The predictor p1 is the constant predictor p1(x) = 1/2. In the second example, we
draw x uniformly at random from the interval [ε, 1] and then draw y ∈ {0, 1} from
the Bernoulli distribution with parameter x − ε. The predictor p2 is the identity
function p2(x) = x for x ∈ [ε, 1]. We will prove the correctness of the examples in
Section A.8.
The second example, (p2,D2), demonstrating that the CDL can be significantly

smaller than the ECE, is quite instructive. It opens up the possibility that the
CDL can be minimized at a faster rate than what is possible for ECE in the online
setting. Indeed, the main technical result of [Hu and Wu 2024] gives an efficient
online CDL minimization algorithm achieving rate O(

√
T log T ), overcoming the

information-theoretic lower bound Ω(T 0.54389) for ECE [Qiao and Valiant 2021;
Dagan et al. 2025] (see Section 5 for more discussions).
To conclude this subsection, CDL measures the calibration error using the payoff

loss of downstream decision makers caused by mis-calibration. In addition to in-
troducing CDL as a meaningful decision-theoretic measure of calibration, the work
of [Hu and Wu 2024] also shows that CDL allows a significantly better rate than
what is possible for ECE in online calibration, which we discuss in Section 5.
In Section 4.2 we give a simpler yet equivalent definition of the CFDL in (4.5),

which leads to an interpretation of CDL through the lens of indistinguishability.

4.2 Characterization of the Maximum Expected Payoff

In this section we prove Theorem 4.1. We start by giving a characterization of the
maximum expected payoff on the right-hand side of (4.2) for a general predictor
p that may or may not be calibrated, which simplifies the definition of CFDL and
will be useful in the proof.

Recall the definition of the recalibration p̂ of p (Definition 6.4): p̂ is obtained by
replacing each prediction value v = p(x) with the actual conditional expectation
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E[y|p(x) = v]. Clearly, p̂ is perfectly calibrated. If p is perfectly calibrated, then
p̂ = p. We have the following characterization of the maximum expected payoff
achievable by post-processing p (see Section A.3 for proof):

Lemma 4.4. Let D be a joint distribution on X × {0, 1}. For any predictor
p : X → [0, 1] and any decision task T = (A, u), it holds that

max
σ:[0,1]→A

E
(x,y)∼D

[u(σ(p(x)),y)] = E
(x,y)∼D

[u(σT (p̂(x)),y)], (4.4)

where p̂ is the recalibration of p.

We can now rewrite the definition of CFDL (Definition 4.2) based on Lemma 4.4:

CFDLT (p,D) = E
(x,y)∼D

[u(σT (p̂(x)),y)]− E
(x,y)∼D

[u(σT (p(x)),y)]. (4.5)

This expression allows us to easily calculate the CFDL for specific decision tasks.
For example, consider the task T2 = (A, u) where the action space A is the unit
interval A = [0, 1], and the payoff function is quadratic:

u(a, y) = 1− (a− y)2 ∈ [0, 1], for a ∈ [0, 1] and y ∈ {0, 1}.

The corresponding best-response function is the identity: σT (v) = v. Plugging it
in (4.5), we obtain an equality between the CFDL and the square of ECE2:

CFDLT2
(p,D) = E

(x,y)∼D
[(p(x)− y)2 − (p̂(x)− y)2]

= E[p(x)2 − p̂(x)2 + 2y(p̂(x)− p(x))]

= E[p(x)2 − p̂(x)2 + 2p̂(x)(p̂(x)− p(x))] (E[y|p̂(x), p(x)] = p̂(x))

= E[(p(x)− p̂(x))2] = ECE2(p,D)2. (4.6)

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. If p is perfectly calibrated, then p = p̂, and (4.2)
follows immediately from Lemma 4.4. For the reverse direction, if (4.2) holds
for any decision task, then in particular, it holds for the task T2 above, implying
CFDLT2

(p,D) = 0. By (4.6), we have ECE2(p,D) = 0, so p is perfectly calibrated,
as desired. Since the quadratic payoff function of T2 has a bounded range [0, 1], this
proof also implies that the CDL of a predictor is zero if and only if the predictor is
perfectly calibrated.

4.3 The Bregman Divergence View of CDL

We show that the CFDL of a predictor p w.r.t. any decision task T can be expressed
as a Bregman divergence Dφ(J

∗∥Jp) between the two joint distributions J∗ and
Jp (Theorem 4.9). Our proof uses a classic characterization of proper scoring rules
[McCarthy 1956; Savage 1971; Gneiting and Raftery 2007].
We start with the definition of Bregman divergence.

Definition 4.5 Bregman Divergence. Let φ : [0, 1] → R be a convex function and
let ∇φ : [0, 1] → R be its subgradient. For any pair of values µ∗, µ ∈ [0, 1], their
Bregman divergence w.r.t. φ is

Dφ(µ
∗∥µ) := φ(µ∗)− φ(µ)−∇φ(µ) · (µ∗ − µ).
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Since ∇φ(µ) is a subgradient of φ at µ, the Bregman divergence is always nonneg-
ative. When µ = µ∗, the Bregman divergence becomes zero.

We will interpret the values µ∗, µ ∈ [0, 1] in the definition above as the parameters
of two Bernoulli distributions. For example, if we choose φ(µ) to be the negative
Shannon entropy of the Bernoulli distribution with parameter µ:

φ(µ) = µ lnµ− (1− µ) ln(1− µ),

then the Bregman divergence becomes the KL divergence between the two Bernoulli
distributions parameterized by µ∗ and µ:

Dφ(µ
∗∥µ) = µ∗ ln

µ∗

µ
+ (1− µ∗) ln

1− µ∗

1− µ
.

The following key theorem makes the connection between Bregman divergences and
decision tasks.

Theorem 4.6. For any decision task T = (A, u), there exists a convex function
φ : [0, 1] → R with subgradient ∇φ : [0, 1] → R such that

u(σT (v), y) = φ(v) +∇φ(v) · (y − v) for every v ∈ [0, 1] and y ∈ {0, 1}.

To prove the theorem, one should first observe that the function u(σT (v), y) is a
proper scoring rule. That is, for any v, v′ ∈ [0, 1], we have

E
y∼v

u(σT (v),y) ≥ E
y∼v

u(σT (v
′),y),

which follows from the definition (4.1) of the best-response function σT . The theo-
rem then follows from a standard characterization of proper scoring rules [McCarthy
1956; Savage 1971; Gneiting and Raftery 2007].
We can now write the expected payoff achieved by a predictor p using the Breg-

man divergence between p and its recalibration p̂ (see Section A.4 for proof):

Lemma 4.7. Fix a joint distribution D of (x,y) ∈ X ×{0, 1}. Let p : X → [0, 1]
be a predictor and p̂ be its recalibration (Definition 6.4). Then for any decision task
T = (A, u) and the corresponding convex function φ from Theorem 4.6,

E
D
[u(σT (p(x)),y)] = E

D
[φ(p̂(x))]− E

D
[Dφ(p̂(x)∥p(x))], (4.7)

CFDLT (p,D) = E
D
[Dφ(p̂(x)∥p(x))]. (4.8)

We now generalize the definition of Bregman divergence to joint distributions,
such as J∗ and Jp, over the domain [0, 1]× {0, 1}.

Definition 4.8 Induced Bregman Divergence between Joint Distributions. Let φ :
[0, 1] → R be a convex function and let ∇φ : [0, 1] → R be its subgradient. For
any joint distribution J of (v,y) ∈ [0, 1] × {0, 1}, we use µJ(v) = EJ [y|v] ∈ [0, 1]
to denote the parameter of the Bernoulli distribution of y conditioned on v. Let
J1, J2 be a pair of joint distributions of (v,y) ∈ [0, 1]× {0, 1} that share the same
marginal distribution of v and denote this marginal distribution by M . We define
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the Bregman divergence between J1 and J2 induced by φ as10

Dφ(J1∥J2) := E
v∼M

[Dφ(µJ1
(v)∥µJ2

(v))].

Combining Lemma 4.7 and Definition 4.8, we have a Bregman divergence char-
acterization of the CFDL for any decision task T (see Section A.5 for proof).

Theorem 4.9 Bregman Divergence View of CFDL. Let D be a joint dis-
tribution over X × {0, 1}, and let p : X → [0, 1] be a predictor. As before, given
(x,y∗) ∼ D, we draw yp from the Bernoulli distribution with parameter p(x),
and use J∗, Jp to denote the distributions of (p(x),y∗) and (p(x),yp), respectively.
Then for any decision task T = (A, u) and the corresponding convex function φ
from Theorem 4.6, CFDLT (p,D) = Dφ(J

∗∥Jp).

4.4 Further Work

As we discuss in this section, the defining property of CDL is that it provides a
meaningful guarantee on the swap regret incurred by downstream decision makers
who trust the predictions. However, CDL is undesirable in other aspects: like ECE,
it is discontinuous and requires high sample complexity to estimate. Recent work
of [Rossellini et al. 2025] introduces the notion of cutoff calibration error to address
the sample complexity issue while maintaining a restricted form of the decision-
theoretic guarantee of CDL (e.g. they consider the regret relative to monotone
post-processings of the predictions). This notion of cutoff calibration is essentially
identical to the notion of proper calibration from [Okoroafor et al. 2025], who give an

algorithm achieving Õ(
√
T ) error rate for proper calibration in the online setting

(see Section 5 for the setting). The works of [Blasiok et al. 2023b; Blasiok and
Nakkiran 2024; Hartline et al. 2025] show that low smooth calibration error also
gives certain decision-theoretic guarantees. In particular, these works show that
it implies low regret for certain forms of Lipschitz post-processings or for decision
makers who make randomized responses (e.g. by adding noise to the predictions),
though this implication often comes with a quantitative loss (e.g. smooth calibration
error being at most ε only implies an O(

√
ε) regret).

5. ONLINE CALIBRATION

We have discussed a variety of ways to quantify the calibration error of a given
predictor. In this section, we turn to the algorithmic question of constructing a
predictor with low calibration error. This question, when naively formulated, ad-
mits a trivial and unenlightening solution: one can simply construct a constant
predictor that assigns (an approximation of) the overall average E[y] to every indi-
vidual x. This is a well-calibrated predictor according to every calibration measure
we have discussed. Thus, for the algorithmic question to be insightful, it is essential
to formulate it in such a way that reaches beyond the trivial solution. The seminal
work of Foster and Vohra [Foster and Vohra 1998] introduced one such interesting
question that turned into an active area of research with exciting recent progress:

10One can also view Dφ(J1∥J2) as the Bregman divergence corresponding to the negative entropy

Φ(J) of any joint distribution J of (v,y) ∈ [0, 1]× {0, 1} defined by Φ(J) := E(v,y)∼J [φ(µJ (v))].
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calibration in online prediction. We will first describe the problem setting and then
briefly survey some key results in the literature.
The online prediction problem has T rounds indexed by t ∈ [T ]. In round t, our

algorithm makes a prediction pt ∈ [0, 1], and nature reveals an outcome yt ∈ {0, 1}.
For example, we can interpret the problem as predicting the chance of rain each
day for T days, where pt is the prediction we make on day t, and yt = 1 if day
t is rainy. Since the rounds are ordered chronologically, we allow our algorithm
to choose pt as a function of the history Ht−1 = (p1, . . . , pt−1, y1, . . . , yt−1), and
similarly, yt can depend on the history Ht−1 as well.

To evaluate the calibration error of the prediction sequence p1,...,T := (p1, . . . , pT )
w.r.t. the outcome sequence y1,...,T := (y1, . . . , yT ), we consider the predictor p :
{1, . . . , T} → [0, 1] that assigns prediction p(t) := pt to each time step t = 1, . . . , T .
Viewing each time step as an individual, we let D be the uniform distribution over
the individual-outcome pairs (t, yt) for t = 1, . . . , T . By slight abuse of notation, we
can transform any calibration measure CAL for (p,D) into a calibration measure
CAL for (p1,...,T , y1,...,T ) as follows:

CAL(p1,...,T , y1,...,T ) := T CAL(p,D).

Once a calibration measure CAL is chosen, our goal is to design a prediction
algorithm that guarantees a small (e.g. sub-linear, i.e., o(T )) calibration error ac-
cording to CAL, regardless of how the outcomes yt are generated. We wish to
design a prediction algorithm P that specifies how pt should be chosen as a func-
tion of the history Ht−1 for every round t. We want the calibration error to be
small regardless of nature’s strategy Y , which specifies how yt should be chosen
as a function of Ht−1 for every round t. That is, we want to solve the following
optimization problem:

minimize
P

max
Y

CAL(p1,...,T , y1,...,T ), where p1,...,T , y1,...,T is generated by P and Y .

For some calibration measures (e.g. ECE and CDL), it is necessary to use random-
ized prediction algorithms to achieve sub-linear rates. Such an algorithm constructs
a distribution P over prediction strategies P to solve the following problem:

minimize
P

max
Y

E
P∼P

[CAL(p1,...,T , y1,...,T )].

Here is why randomized predictions are necessary for achieving sub-linear rates
for ECE or CDL. For every deterministic prediction algorithm P , nature can infer
the prediction pt based on the history Ht−1, and can then choose yt = 1 if and only
if pt < 1/2, incurring an Ω(T ) rate for ECE and CDL.
In Table I, we summarize the current best upper and lower bounds on the optimal

online calibration rates for a few calibration error measures we discussed earlier,
which is an active topic for recent research. Notably, the only calibration measure
in this table that does not allow an Õ(

√
T ) rate is ECE.

There are substantial gaps between the best upper and lower bounds for many
calibration measures in this table, making it a natural question to close or reduce
these gaps. Very recently, the works of [Peng 2025] and [Fishelson et al. 2025] have
achieved significant progress on online calibration algorithms in the multi-class
setting, opening up another exciting area for future research.
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Calibration Error Rate Upper Bound Rate Lower Bound

Expected Calibration Error

(ECE)
O(T 2/3)

[Foster and Vohra 1998]
Ω(T 1/2) [Folklore]

Ω(T 0.528)
[Qiao and Valiant 2021]

O(T 2/3−ε)

[Dagan et al. 2025]

Ω(T 0.54389)

[Dagan et al. 2025]

Distance to Calibration

[Blasiok et al. 2023a]
O(T 1/2) [Qiao and Zheng 2024]

[Arunachaleswaran et al. 2025]

Ω(T 1/3)

[Qiao and Zheng 2024]

Smooth Calibration Error

[Kakade and Foster 2008]
O(T 1/2) [Qiao and Zheng 2024]

[Arunachaleswaran et al. 2025]

Ω(T 1/3)

[Qiao and Zheng 2024]

Calibration Decision Loss

(CDL) [Hu and Wu 2024]
O(T 1/2 log T ) [Hu and Wu 2024] Ω(T 1/2) [Hu and Wu 2024]

Table I. Upper and lower bounds on the optimal rates for online calibration

6. THE DISTANCE TO CALIBRATION

At this point, we seem to have a Cambrian explosion of approximate calibration
measures, each of which has their own desirable properties, and will give different
calibration errors for a predictor. How should we compare these different measures,
and decide which to use? Is there any notion of ground truth, that would guide
us in this choice? In this section, we present one possible answer to this question
via the notion of the distance to calibration [Blasiok et al. 2023a]. We show that
the smooth calibration error gives us the best approximation to this ground-truth
measure in an information-theoretic sense.
Recall that we defined D∗ to be the joint distribution of x,y∗, whereas J∗ denotes

the joint distribution (p(x),y∗).

Definition 6.1 Distance to calibration [Blasiok et al. 2023a]. Given a distribution
D∗, define Cal(D∗) to be the set of predictors q : X → [0, 1] such that q is perfectly
calibrated under D∗. Define the true distance to calibration of the predictor p as

dCE(p,D∗) = min
q∈Cal(D∗)

d(p, q).

This definition formalizes the intuition that a predictor which can be made per-
fectly calibrated by a small change to its predictions is close to being calibrated.
A desirable property that follows immediately from this definition is that the dis-
tance to calibration is continuous (unlike ECE). In fact, dCE is Lipschitz con-
tinuous: if we chance our predictor p to a different predictor p′ that is ε-close
to p (|d(p, p′) ≤ ε|), the distance to calibration can only change by at most ε
(|dCE(p,D∗) − dCE(p′,D∗)| ≤ ε). This continuity property can be easily proved
using the triangle inequality for the metric d.
Despite its intuitiveness and continuity, dCE differs from the other notions of

calibration we have seen so far in a crucial way: it depends on the feature space
X (at least, syntactically). This dependence comes about because both the set
Cal(D∗) of perfectly calibrated predictors and the distance metric d depend on
X . The definition of dCE does not give any hints about how one might go about
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computing or approximating it.
It is natural to ask to what extent dCE actually depends on the space X , and if

it can be approximated by a calibration measure which is independent of X . This
leads us to two new definitions.

Definition 6.2 [Blasiok et al. 2023a]. The upper distance to calibration dCE(J∗)
is the maximum of dCE(p′,D′) over all spaces X ′, distributions D′ on X ′×{0, 1} and
predictors p′ : X ′ → [0, 1] such that the distribution J ′ = (p′(x′),y′) is identical to
the distribution J∗ = (p(x),y∗). The lower distance to calibration dCE is defined
analogously, replacing the maximum by minimum.

By their definition, both dCE and dCE achieve the goal of only depending on J∗

and not D∗. It also follows that

dCE(J∗) ≤ dCE(p,D∗) ≤ dCE(J∗).

This leads to two questions:

(1) The definitions of dCE and dCE seem rather cumbersome at first, since they
involve optimizing over a possibly infinite collection of feature spaces and pre-
dictors. Are there more tractable characterizations of these notions, ideally
ones that will let us estimate them efficiently?

(2) How far apart are dCE and dCE? An ideal situation would be that they are
always equal, or at most a constant factor apart. If so, either of them could
serve as a good approximation for dCE, assuming we find efficient ways to
compute them.

In the following subsection, we will show that the largest gap between the upper
and lower distances is quadratic (dCE(J∗) ≤ 4

√
dCE(J∗)), and that the smooth

calibration error gives a constant-factor approximation to the lower distance to
calibration. Together, these results let us efficiently approximate the distance to
calibration using smooth calibration error, as in the work of [Hu et al. 2024].

6.1 Characterizing and Relating the Upper and Lower Distances to Calibration

In this subsection, we answer the two questions above. Specifically, we give simple
characterizations for the upper and lower distances in Theorems 6.6 and 6.7. We
show that the two distances are at most quadratically apart in Theorem 6.9.
We first give a simpler characterization of the upper distance. We begin with

some definitions needed to state the characterization.

Definition 6.3 Calibrated post-processing. Define the set K(J∗) to be the set of
post-processing functions that, when applied to p, give a perfectly calibrated predic-
tor. Formally, K(J∗) = {κ : [0, 1] → [0, 1] s.t. (κ(p(x)), y∗) is perfectly calibrated.}

We observe that the set K(J∗) is non-empty, since the constant predictor which
predicts E[y∗] is calibrated, and this corresponds to the constant function κav(v) =
E[y∗] for all v. A more interesting post-processing is κrecal(v) = E[y∗|v], and we
call the post-processed predictor p̂(x) := κrecal(p(x)) the recalibration of p: this
predictor keeps the same level sets as p, and changes the predictions to be calibrated.
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Definition 6.4 Recalibration. Fix a distribution D of (x,y) ∈ X × {0, 1}. We
define the recalibration of a predictor p : X → [0, 1] to be another predictor, denoted
by p̂ : X → [0, 1], where p̂(x) := ED[y|p(x)].

Lemma 6.5. It holds that ECE(p,D∗) = d(p, p̂) = d(p, κrecal◦p), where ◦ denotes
function composition.

In general, the set K(J∗) could be much richer and possibly induce closer cali-
brated predictors. In particular, there often exist post-processings κ ∈ K(J∗) such
that d(p, κ◦p) is much smaller than d(p, κrecal ◦p) = ECE(p,D∗). For the two point
distribution D2 considered before, we have seen that ECE(p,D2) = 1/2− ϵ whereas
it follows that κav = 1/2 and d(p, 1/2) = ϵ.
[Blasiok et al. 2023a] give the following characterization of the upper distance.

Theorem 6.6. [Blasiok et al. 2023a] We have

dCE(J∗) = min
κ∈K(J∗)

d(p, κ ◦ p) = min
κ∈K(J∗)

E
x
|κ(p(x))− p(x)|.

This theorem tells us that the upper distance of a given predictor p is exactly
its distance to the closest perfectly calibrated predictor that can be obtained by
applying a post-processing κ to p.

Let us sketch the proof idea. K(J∗) is the set of relabelings of the level sets
of p which result in a calibrated predictor. For any space X ′, distribution D′ and
predictor p′ where J ′ = J∗, applying the post-processing function κ ∈ J∗ results in a
perfectly calibrated predictor κ(p′) on X ′. Hence the distance from such predictors
is always an upper bound on dCE. For the space X ′′ where each level set is a single
point, these are the only calibrated predictors, so the bound is tight.
We now turn to the lower distance. The good news is that the characterization is

in terms of a calibration measure that we have encountered previously: the smooth
calibration error smCE(p,D∗). The proof however is more involved, we refer the
reader to [Blasiok et al. 2023a; Blasiok and Nakkiran 2024].

Theorem 6.7 [Blasiok et al. 2023a]. We have

smCE(p,D∗)/2 ≤ dCE(J∗) ≤ 2smCE(p,D∗)

This theorem lets us efficiently approximate the lower distance to calibration,
up to a constant factor, by computing the smooth calibration error. An efficient
algorithm for computing the smooth calibration error is given by [Hu et al. 2024].
We now address the question of how close the upper and lower distances are.

Assume that all we know about the predictor p and distribution D∗ = (x,y∗) is
the distribution J∗ = (p(x),y∗). Does this specify dCE(p,D∗) completely? Or
is there still some uncertainty about how far the closest calibrated predictor is,
depending on the space X ? The answer (perhaps surprisingly) is that there is
quadratic uncertainty in the distance, given J∗.

Corollary 6.8. No calibration measure based on J∗ can distinguish between
the cases where dCE(p,D∗) ≥ η and dCE(p,D∗) ≤ 2η2.

We present an example illustrating Corollary 6.8 in Appendix B. Specifically, we
construct pairs of predictors and distributions (p1,D∗

1) and (p2,D∗
2) so that J∗ is
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identical in both cases, but dCE differs by a quadratic factor. It turns out that this
quadratic separation is in fact the worst possible.

Theorem 6.9 [Blasiok et al. 2023a]. We have dCE(J∗) ≤ 4
√
dCE(J∗).

We discuss the proof of this theorem in Appendix C following the original approach
of [Blasiok et al. 2023a] via the notion of interval calibration error.

Conclusion.

The classic notion of calibration needs to be rethought in order to satisfy require-
ments like robustness and computational efficiency, motivated by applications to
machine learning and decision making. This leads to a rich set of new questions,
in terms of what are desirable properties for approximate calibration notions to
have and new algorithmic challenges that arise from trying to achieve these prop-
erties. This is a broad and active area of research that spans machine learning,
decision making and computational complexity. There are several questions that
still remain, such as efficient and meaningful notions of calibration for the multi-
class setting [Gopalan et al. 2024] and the generative setting [Kalai and Vempala
2024]. We hope to have given the reader a feel for this in the survey, by highlighting
the motivating questions, the definitional challenges and the algorithmic issues.
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A. DEFERRED PROOFS

A.1 Proof of Lemma C.2

Proof. Let wj = E[p(x)|p(x) ∈ Ij ], and note that wj ∈ Ij , a property that will
be used shortly. We can write

intCEB(p, J
∗) = width(B) +

∑
j

Pr[p(x) ∈ Ij ]|vj − wj |. (A.1)

We now bound d(p, qB) as

d(p, qB) = E
D∗

[|p(x)− qB(x)|]

=
∑
j∈[k]

Pr[p(x) ∈ Ij ]E[|p(x)− vj ||p(x) ∈ Ij ]

≤
∑
j∈[k]

Pr[p(x) ∈ Ij ] (E[|p(x)− wj ||p(x) ∈ Ij ] + |wj − vj |)

≤ (
∑
j∈[k]

Pr[p(x) ∈ Ij ])width(B) +
∑
j∈[k]

Pr[p(x) ∈ Ij ]|vj − wj |

= intCEB(p, J
∗) (By equation(A.1))

where the penultimate line uses the fact that conditioned on p(x) ∈ Ij , |p(x)−wj | ≤
width(B) since both values lie in the interval Ij .

A.2 Proof of Lemma C.4

Proof. Let β be a width parameter to be chosen later. We consider the bucket-
ing B where the first interval is [0, b] for b picked randomly from the interval [0, β].
Every subsequent interval has width β (except possibly the last, which might be
smaller). Denote the intervals by I1, . . . , Ik.

For the predictor q, the calibration error term for B is 0 since

CEB(q) =
∑
j∈k

|E[1(q(x) ∈ Ij)(y
∗−q(x))]| ≤

∫
v∈[0,1]

Pr[q(x) = v]|E[(y∗−q(x)|q(x) = v]| = 0.

So we will try the bound the calibration term for p by comparing it to q and
arguing that if they are close by, this error is small.

CEB(p,D∗) =
∑
j∈k

|E[(y∗ − p(x))I(p(x) ∈ Ij)]|

≤
∑
j∈k

|E[(y∗ − q(x))I(p(x) ∈ Ij)]|+
∑
j∈k

|E[(q(x)− p(x))I(p(x) ∈ Ij)]|

(A.2)

We bound each of these terms separately. To bound the second term,∑
j∈k

|E[(q(x)− p(x))I(p(x) ∈ Ij)]| = E[|q(x)− p(x)|] ≤ δ (A.3)
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For the first term, we have∑
j∈k

|E[(y∗ − q(x))I(p(x) ∈ Ij)]| ≤
∑
j∈k

|E[(y∗ − q(x))I(q(x) ∈ Ij)]|+

|E[(y∗ − q(x))(I(p(x) ∈ Ij)− I(q(x) ∈ Ij)]

≤
∑
j

|I(p(x) ∈ Ij)− I(q(x) ∈ Ij)|

where we use CEB(q,D∗) = 0 and |y∗ − q(x)| ≤ 1. The RHS is 0 if p(x) and q(x)
land in the same bucket, else it is 2. p(x) and q(x) land in different buckets if there
is a bucket boundary between them, which happens with probability bounded by
|p(x)− q(x)|/β over the random choice of b. Hence we can bound∑

j∈k

|E[(y∗ − q(x))I(p(x) ∈ Ij)]| ≤
2E[|p(x)− q(x)|]

β
=

2δ

β
. (A.4)

Plugging Equations (A.3) and (A.4) back into Equation (A.2) and choosing β =√
2δ,

CEB(p,D∗) ≤ δ + 2δ/β.

intCEB(p,D∗) ≤ CEB(p,D∗) + width(B) ≤ β + δ + 2
√
δ ≤ 4

√
δ.

A.3 Proof of Lemma 4.4

Proof. The lemma can be proved by considering the level sets Xv := {x ∈
X : p(x) = v} for v ∈ [0, 1]. Within each level set, p is a constant function, and
the functions σ(p(x)) formed by all choices of σ : [0, 1] → A are all the constant
functions on this level set taking value in A. Moreover, for any level set Xv, the
conditional distribution of y given x ∈ Xv is the Bernoulli distribution with param-
eter p̂(x), where p̂(x) is also a constant function for x ∈ Xv. Decomposing (4.4) by
the level sets, the lemma follows from the definition of the best-response function
σT in (4.1).

A.4 Proof of Lemma 4.7

Proof. By Theorem 4.6,

E
D
[u(σT (p(x),y))] = E

D
[φ(p(x)) +∇φ(p(x)) · (y − p(x))]

= E
D
[φ(p(x)) +∇φ(p(x)) · (p̂(x)− p(x))]

(because E[y|p(x)] = p̂(x))

= E
D
[φ(p̂(x))]− E

D
[φ(p̂(x))− φ(p(x))−∇φ(p(x)) · (p̂(x)− p(x))]

= E
D
[φ(p̂(x))]− E

D
[Dφ(p̂(x)∥p(x))].

This proves Equation (4.7). Similarly,

E
D
[u(σT (p̂(x),y))] = E

D
[φ(p̂(x))]− E

D
[Dφ(p̂(x)∥p̂(x))] = E

D
[φ(p̂(x))].
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Taking the difference between the two equations above, we have

CFDLT (p,D) = E
D
[u(σT (p̂(x),y))]− E

D
[u(σT (p(x),y))] = E

D
[Dφ(p̂(x)∥p(x))].

This proves Equation (4.8).

A.5 Proof of Theorem 4.9

Proof. Let p̂ be the recalibration of p (Definition 6.4). By the definitions of J∗

and Jp, for any x ∈ X , we have

µJ∗(p(x)) = p̂(x), (A.5)

µJp(p(x)) = p(x). (A.6)

Let M denote the marginal distribution of p(x) where (x,y∗) ∼ D. By Lemma 4.7,

CFDLT (p,D) = E
D
[Dφ(p̂(x)∥p(x))]

= E
v∼M

[Dφ(µJ∗(v)∥µJp(v))]

= Dφ(J
∗∥Jp).

A.6 V-shaped Divergences

In this subsection, we discuss a fundamental result about Bregman divergences
(Theorem A.1) that will be used to prove Theorem 4.3.
CDL focuses on decision tasks T = (A, u) with [0, 1]-bounded payoff functions u :

A → [0, 1]. For such tasks, the corresponding convex function φ from Theorem 4.6
must have bounded subgradients:

∇φ(v) = u(σT (v), 1)− u(σT (v), 0) ∈ [−1, 1] for every v ∈ [0, 1]. (A.7)

While the convex functions φ with bounded subgradients ∇φ(v) ∈ [−1, 1] form a
large family, a fundamental result by [Li et al. 2022], which we include as The-
orem A.1 below, shows that the divergences Dφ defined by this family can be
captured by extremely simple functions φ that are termed V-shaped functions.
Specifically, for each v∗ ∈ [0, 1], a V-shaped function φv∗ is defined as follows:

φv∗(v) = |v − v∗| for every v ∈ [0, 1].

The Bregman divergence Dφv∗ is correspondingly termed a V-shaped divergence,
and it can be easily computed as follows: for v1, v2 ∈ [0, 1], we have

Dφv∗ (v1∥v2) =

{
2|v1 − v∗| ≤ 2|v1 − v2|, if v∗ ∈ (v1, v2] or if v

∗ ∈ (v2, v1];

0, otherwise.
(A.8)

The following theorem gives an upper bound on the expected divergence Dφ for a
general φ with bounded subgradient in terms of V-shaped divergences Dφv∗ .

Theorem A.1 [Li et al. 2022]. Let φ : [0, 1] → R be a convex function whose
subgradient is bounded: ∇φ(v) ∈ [−1, 1] for every v ∈ [0, 1]. Then for any distribu-
tion Π of (v1, v2) ∈ [0, 1],

E
(v1,v2)∼Π

Dφ(v1, v2) ≤ sup
v∗∈[0,1]

E
(v1,v2)∼Π

Dφv∗ (v1, v2).
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A.7 Relationship to ECE

We prove Theorem 4.3, which demonstrates the quadratic relationship between the
CDL and the ECE. The first and last inequalities in (4.3) follow immediately from
Jensen’s inequality. The second inequality can be proved using the decision task
T2 from Section 4.2. Specifically, the payoff function of T2 has its range bounded
in [0, 1], so by the definition of CDL and Equation (4.6),

CDL(p,D) ≥ CFDLT2(p,D) = ECE2(p,D)2.

Now we prove the third inequality in (4.3). By Lemma 4.7 and Theorem A.1, for
any decision task T with [0, 1] bounded payoffs,

CFDLT (p,D) = E
D
[Dφ(p̂(x)∥p(x))] ≤ sup

v∗∈[0,1]

E
D
[Dφv∗ (p̂(x)∥p(x))]

≤ 2E
D
|p̂(x)− p(x)| = ECE(p,D). (by (A.8))

This proves CDL(p,D) ≤ 2ECE(p,D), as desired.

A.8 Tight examples between CDL and ECE

We prove the correctness of the two examples (p1,D1), (p2,D2) we mentioned after
Theorem 4.3 that shows the tightness of Theorem 4.3.

In the first example, we have p1(x) = 1/2 and p̂1(x) = 1/2 + ε for any x, so
it is clear that ECE2(p1,D1) = ε. To prove CDL(p1,D1) ≥ 2ε, consider the task
T1 = (A, u) with two actions: A = {0, 1}. The payoff function u is defined such
that u(a, y) = 1 if a = y, and u(a, y) = 0 otherwise. The best-response function is
σT (v) = 0 if v ≤ 1/2, and σT (v) = 1 otherwise. We have

E[u(σT1
(p1(x)),y)] = E[u(0,y)] = Pr[y = 0] =

1

2
− ε,

E[u(σT1
(p̂1(x)),y)] = E[u(1,y)] = Pr[y = 1] =

1

2
+ ε.

Taking the difference between the two expected payoffs, we get CDL(p1,D1) ≥
CFDLT1(p1,D1) = 2ε.

In the second example, we have p2(x) = x and p̂2(x) = x − ε, so it is clear that
ECE(p2,D2) = ε. Now we prove

CDL(p2,D2) ≤
ε2

1− ε
= ε2 +O(ε3). (A.9)

Consider any decision task T = (A, u) with a [0, 1]-bounded payoff function u :

ACM SIGecom Exchanges, Vol. 23, No. 1, July 2025, Pages 51–79



Calibration through the Lens of Indistinguishability · 77

A → [0, 1]. By Lemma 4.7 and Theorem A.1,

CFDLT (p2,D2) = E
D2

[Dφ(p̂2(x)∥p2(x))]

= E
D2

[Dφ(x− ε∥x)]

≤ sup
v∗∈[0,1]

E
D2

[Dφv∗ (x− ε∥x)]

= sup
v∗∈[0,1]

Pr
D2

[
v∗ − (x− ε)

∣∣∣v∗ ∈ (x− ε,x]
]

(by (A.8))

= sup
v∗∈[0,1]

∫ 1

0

(v∗ − (x− ε))I(v∗ ∈ (x− ε, x])dx

≤ sup
v∗∈[0,1]

∫ v∗+ε

v∗
(v∗ − (x− ε))dx

= 2ε2. (A.10)

Since this upper bound on the CFDL holds for any decision task T with a [0, 1]-
bounded payoff function, it implies (A.9), as desired.

B. THE INHERENT UNCERTAINTY IN DISTANCE TO CALIBRATION

Assume that all we know about the predictor p and distribution D∗ = (x,y∗) is the
distribution J∗ = (p(x),y∗). Does this specify dCE(p,D∗) completely? Or is there
still some uncertainty on how far the closest calibrated predictor is, depending on
the space X ?
We present a simple example showing that there is indeed some uncertainty. Take

ϵ to be any value in (0, 1/2), and let δ = ϵ/(1− 2ϵ). The distribution J∗ is easy to
describe: p(x) takes the values 1/2 + δ and 1/2− δ each with probability 1/2, and
conditioned on each value of p(x), y∗ is uniformly distributed in {0, 1}.
Note that any such p is not perfectly calibrated. But it is δ far from the constant

1/2 predictor, which is perfectly calibrated. It is easy to construct a space where
this is indeed the closest calibrated predictor, so that dCE(p,D∗) = δ.
What is perhaps less obvious is there exist spaces and predictors realizing J∗

where the true distance to calibration is much smaller. We describe one such
construction. Let X = {00, 01, 10, 11}. Cosndier the distribution D∗ on pairs
(x,y∗) ∈ X × {0, 1}, and predictors p1, p2 : X → [0, 1] given below:

x PrD∗ [x = x] ED∗ [y∗|x = x] p1(x) p2(x)

00 1
2 − ϵ 1

2 − δ 1
2 − δ 1

2 − δ
01 ϵ 1 1

2 − δ 1
2

10 ϵ 0 1
2 + δ 1

2

11 1
2 − ϵ 1

2 + δ 1
2 + δ 1

2 + δ

The predictor p1 is not perfectly calibrated, indeed we have chosen δ such that
the joint distribution of (p1(x),y

∗) is exactly J∗: conditioned on either prediction
value in {1/2± δ}, the bit y∗ is uniformly random. In contrast, the predictor p2 is
easily seen to be calibrated.
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Observe that p1 and p2 agree on 00 and 11. They disagree by δ on 01 and
10, which each have ϵ probability under D∗, so d(p1, p2) = 2ϵδ = Θ(ϵ2). This
establishes the difficulty of pinning down the true distance to calibration within a
quadratic factor.

C. RELATING UPPER AND LOWER DISTANCES TO CALIBRATION

In this section, we prove Theorem 6.9 showing that the upper and lower distance
to calibration can be at most quadratically far apart. This shows that the simple
example in Appendix B is nearly tight. We follow the proof strategy of [Blasiok
et al. 2023a] using the notion of interval calibration error.

C.1 Interval Calibration Error

Definition C.1 Interval Calibration Error [Blasiok et al. 2023a]. A interval par-
tition B is a partition of the interval [0, 1] into disjoint intervals I1, . . . , Ik. We let
the width of the partition width(B) be the length of longest interval. Given a
predictor p, we define its calibration error and interval calibration error for B re-
spectively as

CEB(p,D∗) =
∑
j∈[k]

|E[(y∗ − p(x))1(p(x) ∈ Ij)]|

intCEB(p,D∗) = CEB(p, J
∗) + width(B).

The interval calibration error minimizes over all interval partitions B:

intCE(p,D∗) = min
B

intCEB(p,D∗).

The definition of intCEB involves two terms that represent a tradeoff: the cal-
ibration error term, and the width term that penalizes partitions which use large
width intervals. Intuitively, as the intervals grow larger it is easier to reduce calibra-
tion error, since we are allowed to cancel out the point-wise errors E[y∗|p(x)]−p(x)
over larger intervals; but the width penalty also grows larger. At one extreme, we
can think of the width 0 case as corresponding to the ECE. At the other extreme,
by taking the single interval [0, 1], we pay E[y∗−p(x)] which is 0 if the expectations
of y∗ and p(x) are equal; a very weak calibration guarantee. But now the width
penalty is 1.
Formal justification for the definition comes from the following observation. The

canonical predictor qB for an interval partition B and a distribution D∗ is the
predictor where for all x ∈ Ij , the qB predicts vj = E[y∗|p(x) ∈ Ij |. It is easy to
see that qB is perfectly calibrated for D∗.

Lemma C.2. The canonical predictor qB for B,D∗ satisfies d(p, qB) ≤ intCEB(p,D∗).

This leads to the following upper bound:

Theorem C.3. [Blasiok et al. 2023a] We have dCE(p,D∗) ≤ intCE(p,D∗).

To prove Theorem C.3 we observe that the canonical predictor qB can be viewed
as a post-processing of the predictor p, since we can write qB(x) = κ(p(x)) where
κ(t) = vj for t ∈ Ij . Thus by Lemma C.2,

dCE(p,D∗) ≤ d(p, qB) ≤ intCEB(p,D∗).
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Minimizing over all B completes the proof.
The reader might wonder, why define yet another calibration measure? The

answer is two-fold:

—Interval calibration error gives a simple yet powerful upper bound on the upper
distance to calibration. In the next subsection, this allows us to relate the up-
per and lower distance to calibration, showing that they are never more than
quadratically far apart. This is formally proved in Theorem 6.9, showing the gap
example in Corollary 6.8 is the worst possible (up to constants).

—It presents a rigorous alternative to heuristic measures like bucketed ECE: reg-
ularize the calibration error by adding the max bucket width. This allows for
meaningful comparison of calibration scores obtained using different number or
other choice of buckets, rather than leaving the number of buckets as a hyperpa-
rameter.

C.2 Proof of Theorem 6.9

Let us pick X ,D∗, p to be the space, distribution and predictor respectively that
achieve the lower distance to calibration for J∗. So there exists a perfectly calibrated
predictor q : X → [0, 1] such that d(p, q) = dCE(p,D∗) = δ. We wish to infer the
existence of a bucketing B so that intCEB(p,D∗) is small. By Theorem C.3, this
will imply that the upper distance is bounded. Corollary 6.8 tells us that we cannot
hope for an upper bound better than

√
δ/2. It turns out that this is not far from

the best possible (see Section A.2 for proof):

Lemma C.4. There exists a bucketing B such that intCEB(p,D∗) ≤ 4
√
δ.

Combining this lemma with Corollary 6.8, we have completed the proof:

dCE(p,D∗) ≤ intCE(p,D∗) ≤ intCEB(p,D∗) ≤ 4
√
δ = 4

√
dCE(p,D∗).
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