Table of Contents

Editors’ Introduction 1
IRENE LO and SAM TAGGART

Letter from the SIGecom Executive Committee 3
MICHAL FELDMAN and FEDERICO ECHENIQUE and BRENDAN LUCIER

SIGecom Winter Meeting 2025 Highlights 6
BAHAR BOROOMAND and SAFWAN HOSSAIN and EDEN SAIG

EconCS in Industry: Skills to Succeed as an Applied Scientist 15
NIKHIL R. DEVANUR and RENATO PAES LEME and OKKE SCHRIJVERS

Tullock Contests in the Wild: Applications in Blockchains 24
PRANAV GARIMIDI and MICHAEL NEUDER and TIM ROUGHGARDEN

Heterogeneous participation and distributional allocation skews 35
NIKHIL GARG

Calibration through the Lens of Indistinguishability 51
PARIKSHIT GOPALAN and LUNJIA HU

Algorithmic Delegated Choice 80
M. T. HAJTAGHAYT and S. SHIN

ACM SIGecom Exchanges, Vol. 23, No. 1, July 2025



ACM SIGecom Exchanges, Vol. 23, No. 1, July 2025
Editors-in-Chief: Irene Lo and Sam Taggart
Communications Team: Yang Cai, Kira Goldner, and Jinzhao Wu

ACM Staff: Irene Frawley

Notice to Contributing Authors to SIG Newsletters

As a contributing author, you retain copyright to your article. ACM will refer all
requests for republication directly to you.

By submitting your article for distribution in any newsletter of the ACM Special
Interest Groups, you hereby grant to ACM the following non-exclusive, perpetual,
worldwide rights:

—to publish your work online or in print on condition of acceptance by the editor

—to include the article in the ACM Digital Library and in any Digital Library-
related services

—to allow users to make a personal copy of the article for noncommercial, educa-
tional, or research purposes

—to upload your video and other supplemental material to the ACM Digital Li-
brary, the ACM YouTube channel, and the SIG newsletter site

Furthermore, you affirm that:

—if third-party materials were used in your published work, supplemental mate-
rial, or video, that you have the necessary permissions to use those third-party
materials in your work



Editors’ Introduction

IRENE LO
Stanford University
and

SAM TAGGART
Oberlin College

We are pleased to present another exciting issue of the SIGecom Exchanges.
The Exchanges seeks to keep the EconCS community abreast of relevant news and
exciting research directions. This Summer 2025 issue has some of both. On the
news side, we have a letter from the SIGecom executive committee, summarizing
ongoing and upcoming SIG activities, and a recap of the 2025 Winter Meeting on
Generative Al and Market Design. We also have three letters, a research survey,
and an annotated reading list, previewed below.

The first of our three letters, by Nikhil Devanur, Renato Paes Leme, and Okke
Schrijvers, discuss some of the common pitfalls they’ve seen among those transi-
tioning from academic work in EconCS to work in industry. They highlight some of
the most helpful skills to pick up in preparation, e.g. in the domains of software en-
gineering and machine learning, and suggest resources for those looking to improve
and hit the ground running.

Our second letter, from Pranav Garimidi, Michael Neuder, and Tim Rough-
garden, explores connections between blockchain technologies and the well-studied
model of Tullock contests from game theory. They show how several protocols in
use in major blockchains can be modeled and understood as Tullock contests. These
applications further suggest new open problems in the theory of Tullock contests.

Our final letter, from Nikhil Garg, reflects on systems that elicit and aggregate
individual preferences—such as participatory budgeting and school matching—to
improve public decisionmaking. He argues that participation often skews toward
more advantaged individuals, and calls for the design of mechanisms that still learn
from participants while ensuring fair outcomes for those less able to engage.

We have one research survey in this issue, from Parikshit Gopalan and Lunjia
Hu. They explore recent advances in approximate calibration, which helps ensure
probabilistic predictions in machine learning are reliable and interpretable for real-
world decisions. They highlight challenges in defining well-behaved, computation-
ally tractable measures of calibration error. They also present an indistinguisha-
bility perspective for understanding calibration error, and discuss implications for
decision making and algorithm design.

The issue concludes with an annotated reading list contributed by Suho Shin
and MohammadTaghi Hajiaghayi. They overview the recent, lively activity on the
delegation problem. In this classical problem from microeconomic theory, an unin-
formed decisionmaker seeks to make a choice of action, and designs a mechanism to

Author’s address: ilo@stanford.edu, staggart@oberlin.edu.
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2 : I. Lo and S. Taggart

delegate this choice to a more-informed agent. They overview the many interesting
variants of the problem, as well as connections to well-loved models in EconCS such
as prophet inequalities and Pandora’s box.

As always, we would like to thank communications chair Yang Cai and technical
lead Jinzhao Wu for their help publishing the issue. Please continue to volunteer
letters, surveys, annotated reading lists or position papers; your contributions are
what keep the Exchanges a lively venue for the SIGecom community. We hope you
enjoy this issue.
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Letter from the SIGecom Executive Committee

MICHAL FELDMAN (chair)

Tel Aviv University

and

FEDERICO ECHENIQUE (vice chair)
UC Berkeley

and

BRENDAN LUCIER (secretary-treasurer)
Microsoft Research New England

It’s an honor for us to serve as the SIGecom Executive Committee. As the in-
coming leadership team, we began our term with a deep appreciation for the strong
and diverse community that has grown around the intersections of economics and
computation. Our goals are to support the SIG’s continued growth while emphasiz-
ing interdisciplinary engagement, recognition of impact, community involvement,
and encouraging diversity across a range of dimensions.

Our flagship event, the ACM Conference on Economics and Computation (EC),
continues to grow and thrive. EC’24 was hosted at Yale University this past summer
and marked the 25th anniversary of the conference. With 848 submissions and
204 accepted papers, EC’24 broke all previous records.! The conference featured
outstanding work across theory, empirics, and applications. We are grateful to
General Chair Dirk Bergemann, PC Chairs Bobby Kleinberg and Daniela Saban,
and the many organizers and volunteers who helped make EC’24 a success. The
conference was accompanied by a robust workshop program, a special session on
highlights beyond EC, along with a virtual preview week that featured the annual
mentoring workshop and many high-quality tutorials.

The continuing growth of EC was especially apparent in the EC’24 town hall,
which was a lively event with participants from many different backgrounds. This
growth is exciting but also comes with challenges. The large number of submitted
papers raises questions about both the reviewing process and the length and size of
the conference. We are in continuing conversations with each year’s organizers to
consider how to deal with these challenges. As always, we invite you to reach out
to us with any thoughts—EC is your conference and we want it to be as successful
and enriching as possible!

The SIGecom Winter Meetings have continued to grow into a vibrant forum for fo-
cused discussions. The 2024 meeting, co-organized by Sigal Oren and Ran Shorrer,
centered on Behavioral Models and brought together economists and computer sci-
entists to explore models of behavioral agents in economic environments. The 2025
meeting, co-organized by Renato Paes Leme and James Wright, focused on Market

IEditors’ Note: This letter was prepared just prior to EC 2025.

Authors’ addresses: mfeldman@tauex.tau.ac.il, fede@econ.berkeley.edu,
brlucier@microsoft.com
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4 . M. Feldman, F. Echenique, and B. Lucier

Fig. 1. The EC’24 town hall meeting.

Design and Generative Al. Through a combination of invited speakers, contributed
talks, and a fireside chat, it explored research ideas and cross-disciplinary topics in
this exciting and developing domain.

Internally, we’ve put particular focus toward improving continuity and support
for the many invaluable volunteers who help run SIGecom events and activities. One
major effort is documenting best practices and institutional knowledge for all major
SIGecom roles. While still in development, these expanded “how-to” documents
are already helping incoming organizers build on their predecessors’ work.

This year also marks the formal establishment of a SIGecom Communications
Committee, tasked with supporting our online presence and community outreach.
The committee is chaired by Yang Cai, with Kira Goldner serving as Social Media
Lead and Jinzhao Wu as Technical Lead. We are excited about this team’s energy
and ideas, and look forward to expanded communications across multiple platforms.
We also want to extend our sincere thanks to Yannai Gonczarowski, who served
as Information Director with dedication and creativity over the past several years,
and helped lay the foundation for this new team.

Looking ahead, we are forming a Fundraising Committee to make the process of
seeking and managing institutional sponsorships more organized and sustainable.
Our goal is to ensure smoother transitions, better documentation, and stronger
institutional memory in this crucial area. We hope in particular to foster long-term
relationships with industrial partners that can help with the financial health of EC
and the rest of our activities.

We’d like to take this opportunity to reinforce our ongoing call for Special Ini-
tiative proposals. SIGecom has annual discretionary funding available to support
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Letter from the SIGecom Executive Committee . 5

community-building efforts such as mentoring programs, inclusion efforts, and other
pilot events. Past initiatives have included the annual EC Mentoring Workshop,
EC childcare support funding, and the SIGecom Winter Meetings. We encourage
members to propose creative new initiatives that further SIGecom’s mission.

We are deeply grateful to the outgoing Executive Committee—Nicole Immorlica,
Scott Kominers, and Katrina Ligett—for their outstanding service over the previous
term. They navigated the SIG through the challenges of the pandemic and helped
strengthen our community through initiatives in diversity, communication, and
hybrid engagement. Their leadership left the SIG stronger, more connected, and
better prepared for the future.

We're also thankful for the many volunteers who contribute to SIGecom’s success
in both visible and behind-the-scenes roles. The SIG could not function without
you! As always, we invite members of our community to get involved. Whether
you're interested in organizing an event, submitting a nomination for one of our
awards, launching a special initiative, or serving in a formal role, we welcome your
participation. Thank you for the opportunity to serve.
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BAHAR BOROOMAND

University of Alberta

and

SAFWAN HOSSAIN

Harvard University

and

EDEN SAIG

Technion — Israel Institute of Technology

Bahar Boroomand is a M.Sc. student in Computing Science at the University of Alberta,
passionate about Machine Learning and its applications. Her current research focuses on alleviat-
ing biases caused by rating-based scoring algorithms in recommender systems using data-driven
machine learning techniques.

Safwan Hossain is a PhD Candidate in Computer Science at Harvard University. His research
interests are broadly at the intersection of economics and computer science, involving questions
related to strategic behavior, fairness, and incentives that arise in supervised or online learning
settings with multiple agents. Prior to his PhD, Safwan received his BASc. in Electrical Engineer-
ing and MSc. in Computer Science from the University of Toronto, and spent two years working
as a machine learning engineer at Cerebras Systems.

Eden Saig is a PhD candidate in Computer Science at the Technion, advised by Nir Rosen-
feld. His research focuses on machine learning and algorithmic decision-making in social contexts,
aiming to develop socially favorable learning algorithms for behavioral environments with dynam-
ics and incentives. Before starting his PhD, Eden received a BSc in Computer Science, BSc in
Physics, and an MSc in Computer Science, all from the Technion.

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION TALKS

1.1 Haifeng Xu: Rethinking Online Content Ecosystems through the Lens of Compu-
tational Economics

The first invited talk of the session, by Haifeng Xu from the University of Chicago,
highlighted a new research agenda: studying the wide range of problems in online
content ecosystems through the formalisms of computational economics. Online
content recommendation engines—core to platforms like YouTube, Instagram, and
TikTok—serve personalized content to billions of users daily. The classic model con-
siders both the users and the content library to be static, with the recommendation
engine responsible for generating a mapping between the two. Xu’s talk envisions
a richer model that incorporates the incentives of content creators (e.g., YouTube
rewarding videos based on length and views), the myopic and dynamic behavior of
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7 . B. Boroomand et al

consumers, and the increasingly prominent role of Al in both generating content
and being trained on it. This is a rich, dynamic multi-agent environment and the
remainder of the talk considers two distinct directions within this framework:

(1) Diagnosing and optimizing existing content ecosystems

(2) How Al-generated content can transform future content ecosystems

Existing content ecosystems can be seen as a two-sided market between self-
interested consumers and creators, with the platforms acting as a powerful and self-
interested intermediary. Recent works have studied parts of this interaction. Several
recent works study the “supply-side” interactions between creators, who generate
traffic, and platforms, who benefit from this traffic and share revenue. These include
understanding, among others, creator competition [Ben-Porat and Tennenholtz
2018; Ben-Porat et al. 2020], incentivized matching mechanisms [Mladenov et al.
2020], and content distribution at equilibrium [Jagadeesan et al. 2023]. Less stud-
ied is the “demand-side”, which model interactions between platforms and users.
[Kleinberg et al. 2024] focus on improving recommendations through “behavior-
aware” system learning. Modeling the overall ecosystem with all three types of
players is understudied. Of note is [Yao et al. 2023]: they study mechanisms to
incentivize content creation for user welfare maximization under a self-interested
platform. The proposed mechanism ends up introducing more competition for con-
gested topics. Importantly, a variant of the mechanism was tested and validated
on Instagram Reels, involving over ten million users and creators.

Xu suggests that the rise of powerful Al systems constitutes a fourth player within
this ecosystem. Al systems can act as content generators and thus compete with
human creators. In turn, they also rely on platforms and user feedback to train and
validate their models. Each of these roles/perspectives lead to numerous unexplored
research questions and can fundamentally alter the dynamics of content ecosystems.
[Taitler and Ben-Porat 2025], for instance, study the Al-creator-platform dynamic
and suggests that Al systems can strategically give worse answers to allow for more
high-quality human generated content in the short term in order to increase their
long-term utility. They also observe a Braess paradox phenomenon occurring once
AT systems partake in content generation. [Raghavan 2024] studies the Al-consumer
interaction and suggests that it may lead to reduced content diversity. [Duetting
et al. 2024] studies the Al-platform-consumer interaction and illustrates how Al
systems can be part of new monetization mechanisms. Overall, the talk concludes
by stressing that “incentives and agency are crucial to both learning algorithms
and market mechanisms for resolving these pressing issues”.

1.2 Jon Kleinberg: Language Generation in the Limit

In his intriguing talk, Jon Kleinberg presented a formal abstraction which aims to
capture the foundational properties of generative AI [Kleinberg and Mullainathan
2024]. He began by asking whether there exists a simple theoretical metaphor
— analogous to the metaphor of “Alice and Bob” in secure communication, or the
metaphor of “Byzantine generals” in distributed systems — which captures the core
properties of generative Al and enables rigorous analysis. Towards this, Kleinberg
proposed framing the task of “learning to generate” as an algorithmic question:
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Can an algorithm, presented only with a stream of valid words of some formal
language, eventually start emitting never-before-seen words of that language?

To formalize this question, [Kleinberg and Mullainathan 2024] extend the classical
framework of language learning in the limit, initially formulated by [Gold 1967],
and further characterized by [Angluin 1979; 1980]. In the framwork, a language
L is a countably infinite set of words, and there is a countable set of languages
{L1, La,...}. An adversary initially selects a target language Ly from that set, and
interacts with an algorithm over discrete time steps. At each step, the adversary
reveals a previously unseen word w € Ly, the algorithm emits an output, and no
further information about Ly, is provided except for these positive examples.

In the original Gold-Angluin framework, the output of the algorithm at each
step is a guess about the index of the target language L, and the goal is design
an algorithm which stops making mistakes after a finite number of steps. The
classic result of [Gold 1967] shows that this task is impossible in general, as an
adversary could construct word streams for which the algorithm makes an infinite
number of mistakes. However, when shifting focus from language identification
to language generation, [Kleinberg and Mullainathan 2024] reveal a fundamental
contrast: They present an algorithm that, in the limit, produces an infinite stream
of valid and previously unseen strings from the target language Ly, despite not
being able to explicitly identify it in the Gold-Angluin sense.

The algorithm relies on the definition of language criticality, which identifies pro-
gressively thinner languages consistent with the data seen so far. At each step, the
generation algorithm maintains the critical language, and generates a previously-
unseen word from it. While this guarantees validity in the limit, the definition of
criticality also implies that each critical language is a strict subset of the previous
ones. Thus, the algorithm may reach a state where the critical language is a strict
subset of Ly, preventing it from generating all possible words in the target lan-
guage. This reveals a trade-off between validity and breadth: to avoid mistakes in
generation, the algorithm must permit incomplete coverage of the target language.
Interestingly, this trade-off draws qualitative parallels to linguistic phenomena ob-
served in practice, such as vernacular adoption dynamics in online communities
[Danescu-Niculescu-Mizil et al. 2013], and quality-diversity tradeoffs in LLMs.

Beyond their main result, [Kleinberg and Mullainathan 2024] provide stronger
convergence guarantees for finite sets of languages, and extend the framework to
settings with prompting. Subsequent work has already begun exploring different
aspects of the validity—breadth trade-off [Charikar and Pabbaraju 2024; Kalavasis
et al. 2024a; 2024b; Kleinberg and Wei 2025], extending the stronger convergence
guarantees to certain infinite sets of languages [Li et al. 2024], and exploring inter-
action models with noisy examples [Raman and Raman 2025]. Each line of inquiry
provides new perspectives on the fundamental properties of language generation,
and creates intriguing frontiers for future work.

1.3 Manish Raghavan: Competition and Diversity in Generative Al

In his talk, Manish Raghavan explored the tension between competition and di-
versity in the context of generative Al, drawing attention to a growing concern:
generative models become ubiquitous across many domains, but the outputs they
produce remain relatively homogeneous. This phenomenon, which relates the the
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9 . B. Boroomand et al

general notion of algorithmic monoculture [Kleinberg and Raghavan 2021], arises
when many individuals rely on the same language model, leading to results which
are less diversified. For instance, while Al tools may enhance individual productiv-
ity in tasks such as brainstorming or ideation, they might also increase homogeneity
by guiding users toward similar answers. This motivates a natural question: Can
we design environments that encourage novelty alongside correctness?

Towards this, [Raghavan 2024] introduces a stylized game-theoretic model to
study this question. The model defines a game over n players, where each action
is a categorical distribution over outputs with an ordering constraint, representing
the output distribution of an LLM given some prompt. When multiple players have
the same realized output, they split the reward, reflecting competition for audience
attention or market share. The theoretical analysis shows that stronger competition
induces players to adopt more diverse strategies, although equilibrium behavior
remains less diverse than the social optimum. Perhaps surprisingly, the relative
ranking of different strategies depends on competitive intensity, and a generative
model that has the best performance in isolation can become suboptimal in the
presence of competition due to lack of diversity.

Empirical validation is performed through simulations of the game Scattergories,
played by LLMs under two settings: one where players share the same language
model but choose generation temperatures strategically, and another where they
can also choose which model to use. The results demonstrate that the best sam-
pling strategy depends not only on the temperature but also on the specific model
and the number of players. Models better at sampling from the tails of their out-
put distributions had greater diversity in their outputs, and performed better as
competitive pressure increased.

The talk concluded with several takeaways and open questions. While generative
AT tools hold immense promise, their widespread adoption risks diminishing diver-
sity. Competition, both between users and between models, can act as a force to
counteract this. This points to a broader design question for Al systems: We often
optimize systems for correctness, but can we optimize for novelty and diversity? As
Al-generated content permeates more aspects of society, understanding and shaping
these dynamics will be a vital challenge for both theorists and practitioners.

1.4 Yannai Gonczarowski: Algorithmic Collusion by Large Language Models

Yannai Gonczarowski presented a talk on his recent paper of the same title, co-
authored with Sara Fish and Ran Shorrer [Fish et al. 2024]. He begins by defin-
ing the classical notion of collusion in economics: traders/competitors meeting to
jointly raise the price of a certain good, at the expense of the public. He comments
that in an increasing number of settings, automated Al driven agents are being used
for pricing, and this work formally explores the potential for autonomous algorith-
mic collusion when large language models (LLMs) are used for this task. Three
main questions are addressed within this context:

(1) Are LLMs good at pricing tasks?

(2) If multiple firms separately use LLMs for pricing, can this lead to supra-
competitive prices?

(3) What mechanisms promote or prevent collusion?
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Using a repeated Bertrand oligopoly environment, the authors first demonstrate
that LLMs are capable of learning near-optimal monopoly pricing quickly and reli-
ably in a monopoly setting. The pricing agent here does not require any fine-tuning
and is instead based completely on in-context information. This includes the task
prompt, basic information about the instance, the market history (past prices,
quantities sold, profits earned etc), and past reasoning stated by the LLM. GPT-4
converges to the optimal monopoly price in all settings, with other LLMs showing
more varied performances.

The duopoly setting is considered next with the precise question: if two firms are
using GPT-4 for pricing, does it lead to competitive or supra-competitive pricing?
Naturally, the in-context prompt used for pricing matters deeply, and the work
considers two variants: (1) explicitly mentioning the LLM to not undermine prof-
itability, and (2) mentioning that lower pricing than competitors will lead to higher
sales volume. While both prompts lead to supra-competitive pricing, prompt (1)
leads to higher prices than prompt (2). To understand the pricing process fur-
ther, the LLM reasoning is analyzed, and evidence illustrates that the agents are
concerned about avoiding a price war, especially under prompt (1).

The talk underscores the regulatory challenges posed by LLMs: their ability
to autonomously adopt collusive strategies even under benign instructions, their
black-box reasoning, and the sensitivity of outcomes to prompt wording. Unlike
traditional Q-learning agents, the basis of past automated pricing works, LLMs are
pre-trained, adaptable, and readily deployable, exacerbating concerns over the real-
world applicability of algorithmic collusion. Reevaluating regulatory frameworks in
light of these findings is fundamental.

1.5 Sanmi Koyejo: On Shaping Al’s Impact on Billions of Lives

In his talk, Sanmi Koyejo presents a multifaceted vision for developing artificial
intelligence technologies that maximize societal benefit while mitigating harm. He
argues for reorienting Al development toward the public good by embedding eco-
nomic, ethical, and sociotechnical considerations into the design and deployment
of AI systems. The underlying premise is that the default trajectory of Al, driven
largely by market incentives, may not align with broader societal interests unless
interventions are made deliberately and early.

A core theme of the talk is the human-AI collaboration paradigm. Rather than
envisioning Al as a replacement for human labour, Koyejo advocates for building
synergistic systems that augment human capabilities, improve job satisfaction, and
unlock elastic economic potential. For example, in domains like consulting, legal
services, and writing, early empirical evidence suggests that Al disproportionately
benefits lower-skilled professionals by narrowing performance gaps. Importantly,
the speaker draws on economic theory to emphasize that AI’s impact on employ-
ment will vary by sector, depending on how demand responds to increased efficiency.
In areas where greater efficiency leads to increased usage, such as healthcare or edu-
cation, Al has the potential to create more jobs by expanding services. In contrast,
in sectors where demand remains relatively fixed, such as agriculture, efficiency
gains are more likely to reduce the number of workers needed.

The talk highlights several concrete application domains where Al can be trans-
formative. In healthcare, he discusses the potential for Al to alleviate administra-
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tive drudgery and reduce burnout among clinicians, enabling them to focus more
on patient care. In education, AI can help close systemic learning gaps through
personalized instruction and empirically driven interventions. Koyejo stresses the
importance of continuous evaluation and measurement infrastructure in both do-
mains, drawing parallels to high-stakes fields like clinical trials. A key insight is the
need for a shift from static, pre-deployment evaluation to dynamic, post-deployment
monitoring, a critical requirement given the evolving nature of Al systems and their
societal impacts.

He also devotes considerable attention to the information ecosystem, where trust,
polarization, and misinformation present pressing challenges. He identifies the dan-
gers of overtrust in Al-generated content, especially in the context of natural lan-
guage interfaces, and proposes mechanisms for calibrated trust, such as user-facing
confidence indicators, citation linking, and interpretable model diagnostics.

Rather than prescribing a single moonshot, Koyejo calls for a portfolio of milestone-
driven efforts, ranging from targeted prize challenges to the establishment of in-
terdisciplinary research centers. He encourages researchers to contribute to foun-
dational infrastructure. This pluralistic approach reflects the belief that shaping
AT’s impact on billions requires collective, iterative innovation rather than top-
down mandates. Policymakers, technologists, and civil society actors are urged to
co-create governance mechanisms that are legally grounded yet adaptable to the
unique demands of Al

2. FIRESIDE CHAT WITH PRESTON MCAFEE AND PRABHAKAR RAGHAVAN

The 2025 Winter Meeting featured a thought-provoking Fireside Chat between Pre-
ston McAfee, Google Distinguished Scientist and a pioneering expert in auctions,
market design, and computational economics, and Prabhakar Raghavan, Google’s
Chief Technologist and a renowned authority on search, algorithms, and web-scale
systems. Drawing on decades of influential research and leadership across academia
and industry, McAfee and Raghavan engaged in a dynamic conversation about how
AT could influence market behavior, support proof automation in microeconomic
theory, expose limitations in current macroeconomic modelling, and introduce new
approaches to reasoning about complex socio-economic systems.

Preston McAfee, Google Distinguished Scientist, is an expert on pricing, auc-
tions, antitrust, business strategy, market design, computational advertising, and
machine learning applied to exchanges. He has published over 130 refereed arti-
cles, holds eleven patents, and has authored three books. His research notably
influenced spectrum auction design, earning him the Golden Goose award. After
earning his B.A. from the University of Florida and his Ph.D. in economics from
Purdue University, McAfee spent 28 years as a professor at UWO, UT Austin,
and Caltech. He held leadership roles at Yahoo!, Google, and Microsoft, includ-
ing Chief Economist at Microsoft. In 2006, he published the open-access textbook
Introduction to Economic Analysis, awarded the SPARC Innovator Award in 2009.

Prabhakar Raghavan is Google’s Chief Technologist and one of the foremost
authorities on algorithms and web search. He is the co-author of the foundational
texts Randomized Algorithms and Introduction to Information Retrieval. Prab-
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hakar has published over 100 papers and holds 20 patents, particularly in link
analysis. At Google, he served as Senior VP for Knowledge & Information, over-
seeing products like Search, Ads, and Gemini. Before Google, he led Yahoo! Labs,
served as CTO of Verity, and spent 14 years at IBM Research. He holds a Ph.D.
from UC Berkeley and a B.Tech from II'T Madras. Prabhakar is a member of the
National Academy of Engineering, a Fellow of ACM and IEEE, and recipient of the
2017 WWW Test of Time Award.

How do you think AI will influence markets beyond traditional con-
cerns like collusion?

Prabhakar. One promising area lies in using reinforcement learning to augment
mathematical proofs, particularly in theoretical computer science and microeco-
nomics. Recent efforts have explored automating proof discovery for hardness of
approximation results by learning to optimize the “gadgets” that underpin such
proofs. While these Al systems haven’t yet proven new theorems, they have inde-
pendently rediscovered known ones using novel constructions not present in training
data. These methods, if extended to combinatorial auctions and mechanism design,
may refine classical hardness results and reduce proof complexity, but they still face
challenges in validation and formal proof checking.

Preston. The macroeconomic side presents deeper methodological challenges.
Traditional economic counterfactuals, such as Fogel’s analysis of GDP without rail-
roads, relied on constructing plausible substitutes to estimate upper bounds. This
logic can be adapted to AI’s economic impact by asking what it would cost to repli-
cate AD’s functionality via non-Al means, but it remains flawed, since the bundle
of activities changes when costs drop. Al shifts the equilibrium by enabling behav-
iors that weren’t previously feasible. The difficulty lies in modelling these dynamic
substitutions and interdependencies across sectors.

Can LLMs or RL-based systems meaningfully contribute to macroe-
conomic modeling?

Prabhakar. While LLMs encapsulate vast textual knowledge, they reflect how
people write about behavior rather than how they act. This makes them imperfect
for modelling human strategy. However, at the aggregate level, macro behavior
is often smoothed out, allowing some usefulness in high-level prediction. Draw-
ing inspiration from DeepMind’s trajectory, from playing Atari to solving protein
folding, Prabhakar suggested that macroeconomic simulations could eventually be
framed as multi-agent reinforcement learning environments. Agents could evolve
over repeated rounds, discovering stable strategies akin to economic equilibria.

Preston. Indeed, modelling economies requires hybrid systems, treating some
actors as markets and others, like corporations or key individuals, as decision-
makers. While firms understand their supply chains, they struggle to model sys-
temic interdependencies. Here, Al could help by simulating how individual deci-
sions propagate through complex global trade networks. With trade integration
now twice as deep as in 1928, understanding these chains is essential, especially
amid rising protectionism. Al may offer the only scalable way to capture such
emergent, nonlinear effects.
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How might qualitative or textual data enhance traditional economic
models?

Prabhakar. Language models can act as transformation systems: converting
internal events or raw data into polished narratives, and potentially reversing that
process. This opens up opportunities to extract soft signals, like executive churn
or tone of announcements, and feed them into economic forecasts. For example,
capturing why certain cars under- or over-perform in sales, despite technical specifi-
cations, may hinge on media coverage and public perception. These hybrid models
blending structured and unstructured data could redefine how economists model
demand or investor response.

Preston. Traditional models underweight soft signals because they are hard
to quantify. Events like major leadership changes currently impact stock prices
through gut reactions. But LLMs offer a path to formalizing these signals. Map-
ping unstructured news into structured risk assessments or demand adjustments
could allow for richer, more sensitive models. This is especially valuable in markets
where sentiment and narrative matter as much as measurable fundamentals.

‘What are the broader implications for modelling and equilibrium anal-
ysis in Al-influenced systems?

Preston. In practice, economic behavior often deviates from equilibrium. At Ya-
hoo, advertising markets rarely settled into static outcomes. Instead, they evolved
through reactive strategies. This mirrors the behavior of generative adversarial
networks, which approximate equilibria not through optimization but via iterative
best responses. Evolutionary dynamics, rather than rational-agent assumptions,
may offer more realistic economic models, albeit harder to construct. These models
could better fit real data and support policy decisions in complex, adaptive systems.

Prabhakar. Looking ahead, the key question is whether Al-infused macroeco-
nomic analysis will influence actual policymaking. It’s one thing to critique policy
papers using LLMs or propose speculative models; it’s another to change how gov-
ernments approach economic strategy. The hope is that in the next 10-15 years,
these tools won’t just enrich analysis but reshape how economic decisions are made,
grounding policy in richer, Al-assisted modelling that bridges qualitative and quan-
titative domains.

ACM SIGecom Exchanges, Vol. 23, No. 1, July 2025, Pages 6-14



SIGecom Winter Meeting 2025 Highlights : 14

REFERENCES

ANGLUIN, D. 1979. Finding patterns common to a set of strings. In Proceedings of the eleventh
annual ACM Symposium on Theory of Computing. 130—-141.

ANGLUIN, D. 1980. Inductive inference of formal languages from positive data. Information and
control 45, 2, 117-135.

BEN-PORAT, O., ROSENBERG, I., AND TENNENHOLTZ, M. 2020. Content provider dynamics and
coordination in recommendation ecosystems. Advances in Neural Information Processing Sys-
tems 33, 18931-18941.

BEN-PORAT, O. AND TENNENHOLTZ, M. 2018. A game-theoretic approach to recommendation sys-
tems with strategic content providers. Advances in Neural Information Processing Systems 31.

CHARIKAR, M. AND PABBARAJU, C. 2024. Exploring facets of language generation in the limit.
arXiv preprint arXiw:2411.15364.

Danescu-NicuLEscu-MiziL, C., WEST, R., JURAFSKY, D., LESKOVEC, J., AND PorTs, C. 2013.
No country for old members: User lifecycle and linguistic change in online communities. In
Proceedings of the 22nd international conference on World Wide Web. 307-318.

DUETTING, P., MIRROKNI, V., PAES LEME, R., XU, H., AND ZU0, S. 2024. Mechanism design for
large language models. In Proceedings of the ACM Web Conference 202/. 144—155.

FisH, S., GONCZAROWSKI, Y. A., AND SHORRER, R. I. 2024. Algorithmic collusion by large lan-
guage models. arXiv preprint arXiv:2404.00806 7.

GoLp, E. M. 1967. Language identification in the limit. Information and control 10, 5, 447-474.

JAGADEESAN, M., GARG, N., AND STEINHARDT, J. 2023. Supply-side equilibria in recommender
systems. Advances in Neural Information Processing Systems 36, 14597—14608.

Karavasis, A., MEHROTRA, A., AND VELEGKAS, G. 2024a. Characterizations of language gener-
ation with breadth. arXiv preprint arXiv:2412.18530.

KavLavasis, A., MEHROTRA, A., AND VELEGKAS, G. 2024b. On the limits of language generation:
Trade-offs between hallucination and mode collapse. arXiv preprint arXiv:2411.09642.

KLEINBERG, J. AND MULLAINATHAN, S. 2024. Language generation in the limit. Advances in
Neural Information Processing Systems 37, 66058-66079.

KLEINBERG, J., MULLAINATHAN, S., AND RAGHAVAN, M. 2024. The challenge of understanding
what users want: Inconsistent preferences and engagement optimization. Management sci-
ence 70, 9, 6336-6355.

KLEINBERG, J. AND RAGHAVAN, M. 2021. Algorithmic monoculture and social welfare. Proceedings
of the National Academy of Sciences 118, 22, €2018340118.

KLEINBERG, J. AND WEI, F. 2025. Density measures for language generation. arXiv preprint
arXiv:2504.14370.

L1, J., RAMAN, V., AND TEWARI, A. 2024. Generation through the lens of learning theory. arXiv
preprint arXiv:2410.18714.

MLADENOV, M., CREAGER, E., BEN-PORAT, O., SWERSKY, K., ZEMEL, R., AND BOUTILIER, C.
2020. Optimizing long-term social welfare in recommender systems: A constrained matching
approach. In International Conference on Machine Learning. PMLR, 6987-6998.

RAGHAVAN, M. 2024. Competition and diversity in generative ai. arXiv preprint
arXiw:2412.08610.

RAMAN, A. AND RAMAN, V. 2025. Generation from noisy examples. arXiv preprint
arXiw:2501.04179.

TAITLER, B. AND BEN-PORAT, O. 2025. Selective response strategies for genai. arXiv preprint
arXw:2502.00729.

Yao, F., L1, C., SANKARARAMAN, K. A., Liao, Y., Znu, Y., WANG, Q., WANG, H., aND XU, H.
2023. Rethinking incentives in recommender systems: are monotone rewards always beneficial?
Advances in Neural Information Processing Systems 36, 74582—74601.

ACM SIGecom Exchanges, Vol. 23, No. 1, July 2025, Pages 6-14



EconCS in Industry:
Skills to Succeed as an Applied Scientist

NIKHIL R. DEVANUR

Meta

and

RENATO PAES LEME
Google

and

OKKE SCHRIJVERS

Central Applied Science, Meta

In our years as applied scientists and managers at Google, Amazon, and Meta, we have seen both
the strengths that EconCS researchers can leverage in industry, as well as common challenges that
these researchers face. Most EconCS PhD programs do not emphasize exploratory data analysis,
applied machine learning and statistics, or a coding mindset, even though these are valuable skills
to have in industry. In this article we share how these skills are leveraged, and how you can invest
in building these skills now. In doing so, we hope to make it easier for people from the EconCS
community to be successful in industry, be it during an internship, a sabbatical, as a part-time
consultant, or as a full time applied scientist!

1. INTRODUCTION
EconCS is Multidisciplinary

While the EconCS field has its roots in Theoretical Computer Science, since its
very inception, the field has spanned academic disciplines. When Nisan and Ronen
published “Algorithmic Mechanism Design” in 1999, they connected the fields of
economics and computer science together by focusing on possible strategic input
to algorithms. Over the last 25 years the field has also seen significant cross-
pollination between academia and industry: ad auctions, autobidders, blockchains
and now foundation models have spurred significant theoretic work, and conversely
these new theoretical results have shaped the product offerings that tech companies
have developed. Applied scientists at tech companies operate at the intersection
of this and facilitate a two-way street between academia and industry. They have
a deep understanding of the product problems that exist and help formalize and
popularize such problems in academia, and they leverage the latest developments
in academia to drive impact on the companies’ products.

Industry is rewarding

There is a large overlap between the types of problems academics and applied sci-
entists work on, but there are important differences too. Applied scientists spend
a good amount of time working directly with product teams to understand the in-
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tricacies of the problem space, which helps in formulating theoretical models that
capture the most important factors while abstracting away from peripheral con-
cerns. When subsequently developing algorithms or methods for these models, it’s
key to test this out in the actual production system to confirm that the assump-
tions and abstractions were indeed justified, and to make sure that the new change
actually has a meaningful impact on users. Eventually, the algorithms they work
on may impact millions or even billions of end users!

EconCS skills do well in industry

EconCS training provides applied scientists a unique perspective of seeing produc-
tion systems from the perspective of incentives that act on participants. One classic
example is ad auctions, where every modification to the auction changes the be-
havior of both advertisers bidding in such a system as well as the users seeing those
ads. Advertisers may lower bids when presented with higher prices and users may
click less when presented with lower quality ads. The same applies in many other
settings: a change in the content ranking algorithm of a user’s feed, leads to cre-
ators producing different content. And given an algorithmic change that decides
who gets priority for scheduling jobs in a shared computing platform, users will find
ways to improve their own chances of getting allocated by gaming the system.

It is often the case that a new algorithm performs very well when we simulate
it under current user behavior but when we deploy, the user behavior changes and
we end up in a worse place than we were originally. The EconCS perspective of
reasoning about equilibrium and incentives can help identify ways in which real
world systems can be gamed and mechanism design, information design and social
choice can provide methods for making such systems more robust to manipulations.

What's the problem?

While applied science in industry is exciting and EconCS researchers have advan-
tages in utilizing their skillset in industry, the three authors have found that there
are also challenges to making the transition, and in our years have seen those chal-
lenges come up for others as well. Since most EconCS researchers have a background
in theoretical computer science, many are less familiar working with real data, which
makes it significantly more difficult to develop the product understanding that’s
necessary to develop good theoretical models and algorithms for them. Addition-
ally, almost all roles in tech companies require good coding and ML engineering
skills. Even when working with other software engineers (SWEs) and machine learn-
ing engineers (MLEs), there’s a real benefit in being able to develop prototypes and
initial ML models yourself to prove out the methods that you're proposing. It’s
possible to be a highly successful EconCS researcher in academia without picking
up these skills, but learning these skills are key to making a smoother transition to
applied science in a tech company.

How will this article help solve the problem?

In this article we discuss the areas that we have found to be most beneficial that
a typical EconCS PhD program may not include in their curriculum: exploratory
data analysis, machine learning and statistics, and a coding mindset. For each of
these areas, we share how these areas show up in the work, what recommended
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resources are to build the skills, and actionable advice on how you can build the
skills. In writing this article, we hope to give more insight into what working in
industry is like, and give people all the resources to prepare for an industry research
career. Industry research can be a really rewarding career; hopefully this article
will help smooth the transition for those who are excited to pursue it!

2. EXPLORATORY DATA ANALYSIS

The problem with real-world problems is that they tend to be messy. It’s all well
and good to design an auction algorithm that works well for Myerson-regular distri-
butions (the authors of this article have all done this), but how do you know if this
is a reasonable assumption when you’re dealing with real-world input? A key tool in
an applied scientists toolbox is the ability to grab real data and work with it. One
of the most useful basic skills in this domain is Exploratory Data Analysis, or EDA.

Exploratory Data Analysis is the iterative process of learning properties of the
data that you’re working with. Typically you start with a question or hypothesis
(such as: the bids in an auction come from a Myerson-regular distribution), you
then summarize, visualize or model your data, and finally you use what you learn
to ask new questions about the data. For example, you may find that the aggre-
gate distribution of bids is bimodal (which isn’t Myerson-regular), prompting the
question if there are two different populations in the dataset, each corresponding
to one of the peaks. In this process you’ll likely find that your data needs cleaning
or transformations. For example, maybe there was a production error that caused
bids to be logged as NULL.

While it may be tempting to defer to data scientists to conduct EDA, they may lack
the domain knowledge to know the right questions to ask, and what are the most
important take-aways from a visualization. Additionally, every additional depen-
dency means that you are waiting for someone else’s work queue to clear, leading
to slower execution. By versing yourself in EDA, you’ll be able to move fast, but
what should you learn, and how do you get started?

Current Tools

First, it’s useful to be aware of the tools that are used in industry. While these tools
change over time (that’s a caveat that applies to most of the things we share here
in this article), they represent a good place to build the fundamental understanding
and skills.

Data in industry is commonly stored in databases, and most companies will use
some variant of SQL to access the data. While there are some that can work magic
in SQL, generally speaking it’s sufficient to know basic commands, as most of the
visualization, analysis and transformations are easier done after pulling the data.

To analyze the data, there are two languages that are generally used: Python and

R. While Python is generally more common, people with a background in statistics
may be more familiar with R. If you’re only learning one, Python is the way to go.
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The Python data science toolkit is spread out over different packages: Pandas
[ | is used to represent the data and perform operations on it.
It’s built on NumPy | ] and in some cases, familiarity with NumPy
can be helpful in data transformations. To visualize data, seaborn | ]
is the easiest way to get quick results with minimal boilerplate code, but matplotlib
[ ] can be used for more freedom. It’s typically useful to be in an in-
teractive environment when doing EDA, for example by using Jupyter notebooks
(previously called iPython). To learn more about these tools, and data analysis in
Python more generally, check out the free books Python for Data Analysis |
| and the Python Data Science Handbook | ].

R is typically preferred by statisticians, and if you are only learning one language
for data science, it should probably be Python (since it is easier to combine with
general-purpose or ML code and it’s more common in industry). However, because
it is a more domain-specific language, R has some benefits (such as a streamlined
syntax for common data processing steps). The best way to use R is to use the
RStudio environment, along with the tidyverse [ | packages.
The tidyverse packages are based on the philosophy of having Tidy Data [

], and make it particularly easy to get the data in that format. Even if
you don’t plan on using R, reading the Tidy Data paper will be useful! If you want
to learn R, one of the best resources is R for Data Science [ ]

Putting it to Practice

The books we referenced above have many exercises and sample datasets, and it’s
useful to go through them as you’re making your way through the book. How-
ever, in our experience, the best way to fully develop these skills is by 1) using
them to solve problems that you care about, and 2) using them consistently as part
of your larger work. Different strategies may work for different people, but some
suggestions that may help in achieving this are: doing an industry internship, par-
ticipating in data science competitions, and including empirical sections in (some
of) your papers.

A common recommendation to build these skills (be it EDA, ML, statistics, or
coding) is to do an industry internship. The benefit here is that you work on a real
problem, so you're building skills as a means to an end. This makes the importance
of building the skills more salient and helps differentiate the parts that you’ll use
all the time vs the parts that are less common. We won’t repeat the same rec-
ommendation in the following sections, but note that the recommendation applies
there too.

For data science competitions, Kaggle is the most common one. In the major-
ity of competitions, EDA is only the first step of the process, with a more heavy
emphasis on building ML models on the data afterwards, but this can still be a great
way to get hands-on experience (plus: experience with ML is also quite useful)! In
addition to competitions, the site also hosts datasets (along with community code
and discussions) and models.
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Many theory papers don’t have empirical sections or just a rudimentary one that
doesn’t add much insight beyond the theoretic results (we are definitely guilty of
this). But that can be a missed opportunity! An empirical section can demonstrate
that an algorithm can perform much better than worst-case bounds, or provide
strong evidence that the conditions under which theorems are proved are reason-
able. While it can be difficult to get access to data outside of interning/working in
industry (and even then it can be hard to publish those datasets), there are a num-
ber of publicly available datasets that can be useful for this: Criteo has a number
of datasets for online advertising, there’s also a NeurIPS competition dataset [
] for autobidding settings, and the Movielens dataset |

] can be used for general valuations. This list is not exhaustive (and biased
towards our own experience); see if you can find datasets that are appropriate for
your papers!

3. MACHINE LEARNING AND STATISTICS

While exploratory data analysis is all about interactively learning from data with
a human in the loop, machine learning and statistics are used extensively across
tech to develop algorithms automatically from past data and make decisions about
which new features to launch.

Machine Learning

Machine learning is so crucial to all the tech companies that you will definitely need
to work with machine learning models as part of the overall system. For example,
in ad auctions a very important input into the auction is the probability of a click.
We typically assume that we know the true probability, but in practice, this is the
output of a machine learning model. If the model is not perfect—which it never
is—that may affect the outcomes of your design. You need to be aware of the
limitations of machine learning, and be aware of concepts such as overfitting and
calibration.

Another common paradigm in EconCS is dealing with uncertainty, such as in the
study of prophet inequalities. For such problems we either assume that we already
know the distributions exactly, or that we have i.i.d. samples from an unknown
distribution. In the latter case, we assume that each instance is independent, and
we learn only from samples for that instance. In practice, often there are many par-
allel instances of the same problem and the data for all the instances are correlated.
For example, in ad auctions, you can consider the auction for each keyword as an
independent instance, but advertiser values for similar keywords are correlated. For
instance, advertiser values for a keyword “green sweater” could go up because it is
getting colder and all “sweater” related keywords are trending up, or because it is
nearing St. Patrick’s day and keywords for all green colored apparel are trending
up. By using samples from all the keywords together, an ML model can learn such
patterns.

You may need to prototype some simple ML models. For this, you need to know
how to train a model using standard libraries. You need to know what features
to collect, what model architecture to use, what is the loss function, and what are
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typical sanity checks to run, such as normalizing the inputs. To build these skills,
there are several good online courses and Python packages that may be helpful.

For many years, Andrew Ng’s Coursera course has been recommended as a great
starting point to learn machine learning, and for good reason! The course gives
hands-on experience building ML models in Python using Numpy and scikit-learn
[ ]. The latter (also known as sklearn) is a common ML package
used for smaller scale ML training. While you won’t be building production-scale
models with sklearn, it’s an excellent way to build sufficient familiarity with build-
ing ML models. For people that prefer learning through reading, Andrew Ng’s
(CS229 lecture notes are also excellent. For those seeking the thrill of a competition
to motivate themselves to build better models, Kaggle has a whole range of ML
competitions that you can participate in.

A word on LLMs

Large Language Model technology is very exciting and rapidly evolving. For those
wondering if they need to know all the ins and outs of LLM training if they’re in
industry, rest assured that this is not the case. However, it is useful to know how to
use GenAl products, particularly for coding, which is one of the biggest use cases
of these models within tech companies. In addition, we recommend thinking of
creative applications of large language models in new and different areas. These
tools are, for now at least, not a replacement for building coding, EDA, or ML
skills, as you’ll need to not only write code, but also vouch for it’s correctness.

Statistics

Many important insights in practice come from understanding the behavior of the
participants in your design, such as the users or the advertisers. These are typically
observed and validated using large scale experiments, a.k.a. A/B tests. Often the
experiments involve two sides of a marketplace, and experiment design for such mar-
ketplaces has been one of the areas where folks from EconCS have made some very
interesting contributions. Most EconCS researchers are well versed in probability
theory, but there are certain statistical concepts that are crucial to understand in
order to analyze these experiments. These are easy to pick up, such as p-value,
t-test, power analysis, winsorization, or minimum detectable effect.

There are several excellent resources to learn about how A /B tests are run in tech
companies. “Trustworthy Online Controlled Experiments” [ ]
provides a recent overview of the main considerations that go into A/B testing at
tech companies, written by authors who have developed these systems at Google,
LinkedIn and Microsoft. “The Econometrics of Randomized Experiments” |

] is a more technical survey of the analysis of randomized experi-
ments. There are situations where it is infeasible to conduct perfectly randomized
experiments. “Mostly Harmless Econometrics” | ] is a
great guide for the most-used tools for such settings. There are no surveys specific
to experimentation in markets, though interested readers can look up “budget-split
experiments”, “bipartite experiments” or “experimentation under interference”.
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4. CODING MINDSET

Coding is an essential part of being an applied scientist and can be seen as the
ability to translate the algorithms we design to practice. When implementing an
algorithm, one can’t ignore the messiness of the real world — corner cases, data that
is not properly cleaned-up or is missing, small probability events that may cause a
server to crash, et cetera. Coding also forces us to confront performance issues in
a very serious way: constants in the running time of an algorithm may not make a
difference in a research paper but can be a deal-breaker in practice.

Knowledge of certain fundamental languages like C++ (for high performance code)
or Python (for a broad swath of applications) is certainly important but specific
technologies/libraries are constantly changing. So instead of focusing on specific
technologies we suggest developing three things: a coding mindset, strong software
engineering skills, and understanding distributed systems.

Coding Mindset

A coding mindset refers to going one step beyond algorithmic thinking, in actually
seeing the algorithm through in action on real data and reasoning about which
repetitive processes can be automated. Software engineering skills have to do with
writing code that is tested, easy to read, maintainable by others and follows a
consistent and predictable style. It is the difference between writing programs for
yourself and writing code that will be later read and modified by hundreds of other
engineers over a long period of time.

Software Engineering

While there are books and courses devoted to software engineering, we think there
is no better way to learn than doing it in practice, by either doing an internship
where you will write actual production code or contributing to open source projects
where you will develop software alongside others. It is a great idea to sharpen one’s
coding skills using interview-preparation websites (e.g. LeetCode or HackerRank)
or coding competitions (e.g. ICPC). Those help build familiarity with languages
and speed in thinking about coding solutions — which can be very helpful when
building rapid prototypes.

It is important to note that coding does not refer only to writing code. A very
important skill is to be able to read code effectively. Documentation in industry
is frequently missing, incomplete, or outdated, so the only source of truth about
the behavior of a system is the code itself. An effective applied scientist should be
able to interrogate the codebase to understand the behavior of a system. When
we inspect the code more closely we soon find out that the common wisdom about
how the system behaves may not be entirely accurate.

A second reason to learn how to read code effectively is to be able to do code
reviews, i.e. verifying and vouching for code written by others. Applied researchers
typically design systems that are then implemented by other engineers in the or-
ganization. It is important to be able to verify that there are no gaps between the
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system designed and the system actually implemented.

Finally, when we practice reading code, we become better at writing code that
is readable by others. Clear and readable code has useful comments, properly-
named variables and follows a well-defined style—usually according to each com-
pany’s guidelines. Well written code also contains plenty of unit-tests which verify
its correctness and provide code-readers with examples on how each part of the
code is used.

Distributed Systems

Most tech companies operate at a tremendous scale, serving millions and billions of
users at subsecond latencies. This is enabled by complex distributed systems with
many interlocking pieces. Any change that you would want to incorporate has to
be a part of this overall system, so it is important to understand how these systems
work, and what are the strengths and limitations of such systems. We recommend
becoming familiar with the design of systems such as how a news feed is designed,
or how an information retrieval system is designed. The other aspect of this is that
the data that you will be working with is also large scale and typically cannot fit in
the memory of a single computer. Data analysis requires working with distributed
big data systems, so once again, it’s good to be familiar with how to work with such
systems. There are several textbooks on this, such as “Designing Data-Intensive
Applications” | ] or even “System Design Interview” | ] that
can be used to learn more.

5. CONCLUSION

In this article we’ve aimed to give actionable recommendations for EconCS re-
searchers that are interested in building skills for applied science in industry. A
reader may go over this article and get the impression that they’re woefully unpre-
pared for a role in industry unless they do all of this! That’s not the case. Many
applied scientists, to a certain extent ourselves included, pick up these skills when
first preparing for interviews, during internships, or on the job. However, part of
the reason that so many only learn these skills at that stage, is because we simply
didn’t know which skills were important or how to practice them beforehand! In
writing this article, hopefully we’ve shed some light on the skills that are valuable
for applied scientists to have and how you can start building those skills right now,
as part of your broader research agenda.
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This letter shows how Tullock contests—a class of all-pay auctions with proportional allocation
rules—can be used to model and reason about several blockchain settings. We review the fun-
damentals of Tullock contests and their connections to potential games. We discuss why certain
properties of Tullock contests, such as sybil-proofness and compatibility with “decentralization,”
have made them common in blockchain applications. We illustrate how Tullock contests naturally
arise in proof-of-work and proof-of-stake blockchain protocols, and are an attractive design for
emerging marketplaces for blockspace and succinct proofs.
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1. INTRODUCTION

Tullock contests have long been a valuable model for studying economic scenarios.
Tullock explored the concept in [Tullock 1975; 1980] to examine the outcome of
political elections. Since then, the model has found applications ranging from ana-
lyzing R&D investments in patent races [Baye and Hoppe 2003] to understanding
how much sports teams spend on players [Dietl et al. 2008]. The key feature of a Tul-
lock contest is that competitors must invest costly effort before the winner is chosen
probabilistically, with winning probabilities proportional to investments. Crucially,
these contests have an all-pay nature—the losing parties pay for their investments
without any gain—and so participants must hedge against losing when choosing
how much to invest. As a result, multiple parties invest at equilibrium and the
most efficient party will not always win the context. In many blockchain-related
allocation problems, there is: (i) an explicit goal of multiple active participants;
and/or (ii) the possibility of sybil attacks (with one participant masquerading as
many). Tullock contests are an attractive design in such settings.
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In this article, we first recap the basics of Tullock contests and their properties,
and then proceed to a few key examples of their applications in blockchain-related
settings. We highlight applications in which market designers prefer Tullock con-
tests over more efficient alternatives due to their non-winner-take-all equilibria.

2. TULLOCK CONTESTS

A Tullock contest is an all-pay auction in which every participant (or “player”)
makes a costly investment, but only one wins a prize. Formally:

—There are n players.
—FEach player i € {1,2,...,n} chooses an investment level b; > 0 and pays b;.
—The probability of winning the prize is proportional to one’s investment. Thus,
for investments b = (b, ba, ..., by,), player ¢’s probability of winning (a.k.a. their
allocation) is
b;
Z?:l b

In our analysis of Tullock contests, we will always assume that players have quasi-
linear payoffs U;(x;(b)) — b;, where U; is an increasing, differentiable, and (weakly)
concave utility function that satisfies U;(0) = 0.1

One can interpret the outcome of a Tullock contest as allocating one unit of
a divisible good to the participants at a common per-unit price (namely, the
price .1, b;). In particular, a Tullock contest is sybil-proof, meaning that no
participant can benefit from participating under multiple identities (one cannot
do better than splitting one’s single-identity equilibrium bid arbitrarily over one’s
multiple identities).

We will see how multiple different settings can be interpreted as instantiations
of this model. In this article, we consider only the complete information setting
in which agents’ utility functions are common knowledge, and focus on pure Nash
equilibria. This is the setting studied in the relevant blockchain literature. Extend-
ing the analysis to the incomplete information setting and Bayesian-Nash equilibria,
perhaps by building on the techniques in [Syrgkanis and Tardos 2013] and [Cara-
giannis and Voudouris 2016], is an interesting direction for future work.

zi(b) = (1)

2.1 Potential Games and Equilibrium Characterization

A key observation that enables the equilibrium analysis of Tullock contests is that
they are potential games. In a potential game, the equilibrium outcomes correspond
to the global maximizers of a suitably defined potential function. [Johari and
Tsitsiklis 2004] give such a potential function characterizing the equilibria of Tullock
contests. This function is defined on allocation vectors (rather than bid vectors),
and characterizes the allocation vectors that are induced (via (1)) by equilibrium
bid vectors.

THEOREM 2.1 EQUILIBRIUM CHARACTERIZATION [JOHARI AND TSITSIKLIS 2004].
Allocations x that correspond to a pure Nash equilibrium (PNE) of a Tullock contest

IWe often consider the special case of linear utility functions, in which, for each i, U;(z;(b)) =
v; - x;(b) for some value v; > 0.

ACM SIGecom Exchanges, Vol. 23, No. 1, July 2025, Pages 24-34



Tullock Contests in the Wild . 26

are exactly the solutions to
n
max Z Ui(z:)
i=1
subject to > i x; =1 and x; >0 for all i € {1,2,...,n}, where

Ou(as) = (1 — 2)Uiar) + /O " Uiy)dy.

Proof Sketch. Each agent’s best response function can be rewritten as a function
of the allocation vector x and the total sum of bids B. Calculations then show
that the first-order conditions of the optimization problem match the first-order
conditions of the best-response problem faced by players. By our assumptions on
players’ utility functions (such as concavity), these conditions also characterize the
global solutions to the optimization problem and players’ best responses.

Because each utility function U; is weakly concave, each modified utility func-
tion U; is strictly concave. It follows that the potential function above has a unique
maximum. While this only implies a unique equilibrium allocation, rewriting the
agents’ best-response bids as a function of their allocations further shows that equi-
librium bids are unique. This observation gives us the following corollary.

COROLLARY 2.2. In a Tullock contest, there exists a unique PNE.

For blockchain-related applications, it will be useful to extend the basic model
of Tullock costs to include player-specific cost multipliers. Consider a variation of
the Tullock contest model in which player i pays ¢; - b; to bid b,—in effect, some
players can generate a given amount of investment more efficiently than others.
This setting is equivalent to the classic Tullock contest setup in which each player 4
has the utility function U;(z)/¢;.

LEMMA 2.3. Let T(U,c) be a Tullock contest in which players have utility func-
tions U and bidding costs c. Then b is an equilibrium bid vector for T(U,c) if and

only if b is an equilibrium bid vector for T(U/c,e) where e denotes the all-ones
vector.

We omit the straightforward proof.

2.2 Equilibrium analysis

Tullock contests have two defining characteristics: (i) the all-pay nature in which
players pay their bid even when they lose, and (ii) the proportional allocation.
Combined, these characteristics imply that agents have strictly diminishing returns
on investment (even with linear utility functions). For this reason, equilibria of
Tullock contests are generally oligopolistic outcomes. For example, when agents
have linear utility functions, the agents with larger utility functions receive higher
allocations at equilibrium, but the allocation is split over two or more agents. It
follows that Tullock contests do not generally implement fully efficient equilibria.
[Johari and Tsitsiklis 2004] quantify equilibrium inefficiency in Tullock contests
and show that the worst-case “price of anarchy” is precisely 3/4—the sum of agent
utilities at equilibrium in a Tullock contest is always at least 75% of the maximum
possible, and this bound is tight in the worst case.
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THEOREM 2.4 EFFICIENCY OF TULLOCK CONTESTS [JOHARI AND TSITSIKLIS 2004].
In a Tullock contest, let d* be the welfare-mazximizing allocation and d the allocation
corresponding to the unique PNE. Then:

PSUADEES SAtH!

Furthermore, this bound is tight: for every e > 0, there exist n and linear utility
functions Uy, Us, ..., U, such that

;Ui(di) < <i + e> ;Ui(d;*).

For an alternative proof to the one in [Johari and Tsitsiklis 2004], see Section 3 of
[Roughgarden 2006].

Thus, while Tullock contests generally result in inefficient equilibria, the effi-
ciency loss is bounded. This efficiency loss may be acceptable (or unavoidable) if
other considerations, such as encouraging participation to avoid centralization, are
paramount.

The exact realization of the “payments” in a Tullock contest is application-
dependent. For example, in Section 3.1, we discuss proof-of-work blockchain proto-
cols, in which the payments correspond to investments in hardware and electricity.
In Section 3.3, by contrast, we discuss blockspace auctions in which payments rep-
resent direct monetary transfers to an auctioneer. The efficiency objective function
in Theorem 2.4 captures the utilities of players, independent of payments.

3. BLOCKCHAIN APPLICATIONS

We now turn our attention to the relevance of Tullock contests for blockchain pro-
tocols. The following simple model of a blockchain protocol suffices for this article:
an ever-growing sequence of transactions, with a “leader” periodically chosen to
append a new block of transactions. The leader is typically drawn from the set
of physical machines running the protocol (generally called “miners” in a proof-of-
work protocol or “validators” in a proof-of-stake protocol). Two common goals for
“decentralized” blockchain protocols are: (i) permissionlessness, meaning that any-
one should be able to participate in the protocol as a miner or validator; and (ii) no
one or small group of participants should have undue control over the blockchain’s
transaction sequence. In part with these goals in mind, the Bitcoin protocol (among
others) chooses leaders using a “proof-of-work” mechanism, repeatedly choosing a
leader with probability proportional to miners’ hashrates. The Ethereum proto-
col (among others) uses a proof-of-stake mechanism to choose leaders, with each
leader chosen from the validator set with probability proportional to the amount
of cryptocurrency that they have staked (i.e., locked in the blockchain protocol).
We next show that these mechanisms are equivalent to Tullock contests, allowing
us to use Theorem 2.1 to characterize the relative influence of different parties in
these protocols. We then examine how these same ideas have been used to inspire
mechanisms for new blockchain applications to achieve similar goals of having a
decentralized set of participants.
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3.1 Proof-of-Work Protocols

The Bitcoin protocol is “permissionless” in the sense that any party can become
a “miner.” Miners compete to produce new blocks of transactions by repeatedly
hashing candidate strings until they find an input with a sufficiently small output
value. The first miner to publish such an input is rewarded with newly created Bit-
coin (currently 3.125 BTC, worth over 300,000 USD at this time of writing) and also
appends a new block of recent transactions to the running transaction sequence.
The threshold for “sufficiently small” is adjusted, as a function of the amount of
participating hashrate, so that a new block is produced every ten minutes on aver-
age. Miners can invest in hardware and electricity to increase their hashrate and
become more competitive as block producers. However, while anyone is free to
make investments, only those parties that can operate the most efficiently (e.g.,
with access to cheap electricity) find it profitable to stay active in the network;
otherwise, the cost of running the hardware exceeds the rewards they earn. Quan-
tifying the “decentralization” of a proof-of-work protocol can then be formalized as
the following question: what is the distribution of miners’ hashrates at equilibrium,
as a function of miners’ relative costs of operation? [Arnosti and Weinberg 2022]
answers this question using the framework of Tullock contests.

Model:

—There is a block reward r. (E.g., 3.125 BTC.)

—Agent ¢’s utility is U;(x;) = rz;. (Le., agents are risk-neutral.)

—Agent i’s cost of operating ¢; units of hardware is ¢;q;. (E.g., reflecting hardware
depreciation and electricity costs.)

—The allocation is given by ; = ¢;/ > ;- (The definition of proof-of-work leader
selection.)

As shown in Lemma 2.3, this model is equivalent to standard Tullock contests
after a simple transformation. This model implicitly assumes that hardware is
homogeneous, but agents have different acquisition and/or operating costs. Equiv-
alently, agents could have access to differing quality hardware at the same costs.
The block rewards are split pro-rata according to agents’ hardware, as is standard
in Tullock contests. [Arnosti and Weinberg 2022] characterize the equilibrium in
this setting as follows: With respect to fixed agent costs c1,co,...,c,, define the
function

X(c) = Zmax(l —¢;/c,0)

and let ¢* be the solution to X (c¢*) = 1. Then,

THEOREM 3.1 PROOF-OF-WORK EQUILIBRIUM [ARNOSTI AND WEINBERG 2022].
At the unique PNE of the proof-of-work Tullock contest, miners make investments
q; = i max(1 — ¢;/c*,0), resulting in allocations x;(q) = max(1l — ¢;/c*,0).

Thus, for a given a cost vector, there is a threshold cost ¢* such that agents with
costs above the threshold do not participate at equilibrium. The following corollary
provides one interpretation of this equilibrium.
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COROLLARY 3.2 [ARNOSTI AND WEINBERG 2022]. If miner i participates at equi-
librium (g; > 0), then for all j, z;(q) > 1 — <.

Cj

This corollary demonstrates that relatively small differences in the cost of mining
can result in highly concentrated allocations at equilibrium—the “natural oligopoly”
referred to in the paper’s title. For example, with n large and ¢; = i/(i + 1) for
each i, one can calculate ¢7 < ¢* &~ .88 < ¢g [Arnosti and Weinberg 2022]. Because
¢y = 1/2 and ¢; = 7/8, we have z1 > 3/7, representing a substantial amount of
power for a single miner.

3.2 Proof-of-Stake Protocols

In a proof-of-stake protocol (including the Ethereum protocol and many others),
validators lock up capital (a.k.a. stake), and each leader is chosen with probability
proportional to stake. Similarly to the Bitcoin protocol, leaders are responsible
for producing blocks that append recent transactions to the running transaction
sequence and are also rewarded with newly minted cryptocurrency. In a proof-of-
stake protocol, the costly investment is the opportunity cost of locking up stake
(as opposed to, for example, investing in U.S. treasury bills). Thus, the analysis in
Section 3.1 carries over with this new interpretation, with validators choosing how
much stake to invest rather than how much hardware to operate.?:3

An additional complication in blockchain protocols with a mature and Turing-
complete smart contract layer, including the Ethereum and Solana protocols, is
that validators with different levels of sophistication can earn vastly different re-
wards from block production. On top of standard block rewards and transaction
fees, block producers can earn substantial revenue from “maximal extractable value
(MEV).” Roughly, MEV refers to rents extracted by a block producer on account
of their temporary monopoly power over transaction sequencing (e.g., deciding the
order in which trades are executed on a financial exchange) [Daian et al. 2020].
Because some validators know about more pending transactions than others (e.g.,
due to business agreements with power users) and some validators are better at
assembling high-MEV blocks than others (e.g., due to more computational power
or better algorithms for exploring the space of possible blocks), some validators can
earn much more revenue from a given block production opportunity than others.

To capture the validator heterogeneity introduced by MEV, we consider the fol-
lowing model:

Model:

—There is a base reward r.

—Agent #’s utility for being chosen as a block producer is U;(x;) = p; - ra;, with p;
representing the agent’s acumen at extracting MEV from the current block pro-
duction opportunity.

—Agent i chooses an amount 7; of stake and incurs a per-unit cost of c.

2This analysis does not consider any returns validators earn from the stake, itself, appreciating.
3In practice, the majority of stake controlled by validators has been delegated to them by other
parties (and so validators primarily pay operational rather than capital costs). For simplicity, in
this article we’ll ignore the possibility of delegated stake.
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—Allocations are given by z; = m;/ > 7;. (The definition of proof-of-stake leader
selection.)

For example, a validator ¢ with u; = 1 would collect only the base reward for
block production, while a validator with p; = 2 would collect double the base reward
(presumably on account of better MEV extraction). This model is mathematically
equivalent to that in the previous section (see also Lemma 2.3), but the change
in notation is helpful to indicate different interpretations of this model. [Bahrani
et al. 2024] analyze pure Nash equilibria in this setting as a function of the relative
sophistication of different validators at block production (i.e., of the p;’s). They
call a validator set (v, k)-competitive if g1 > - p1; in words, at least k validators
have a reward multiple that is at least a 7 fraction of the largest multiple. In the
context of block production, this means there are at least k parties capable of pro-
ducing a block with value at least vy times that produced by the most sophisticated
validator. (Larger values of k and ~ correspond to “more competitive” validator
sets.) [Bahrani et al. 2024] use this parameterization to upper bound the maximum
equilibrium allocation of any individual validator.

THEOREM 3.3 PROOF-OF-STAKE EQUILIBRIUM [BAHRANI ET AL. 2024].

For every (v, k)-competitive block producer set with v € [0,1] and k > 1, the unique
PNE allocations x satisfy x; < 1 — % for all i.

For example, with 10 validators at least 90% as sophisticated as the most sophis-
ticated validator, no individual validator will control more than 17.5% of the stake
at equilibrium.

If one or a small number of validators are substantially more sophisticated than
the rest, how can one avoid centralization (i.e., stake concentration at equilibrium)?
Modern block production for the Ethereum protocol is based on proposer-builder
separation (PBS), a system in which validators can outsource block production to a
specialized set of third parties called block builders. The goal of PBS is to preserve
decentralization (with many validators participating at equilibrium) by confining
centralization to the set of block builders.*

[Bahrani et al. 2024] extend their analysis to incorporate PBS; as follows. Under
PBS, for each block production opportunity (called a “slot”), the corresponding
leader runs a first-price auction in which block builders compete to construct the
most valuable block and submit bids for their block to be chosen by the leader.
(Thus, the item being sold in the auction is the current block production oppor-
tunity; the seller is the validator that was chosen as the current leader; and the
bidders are the block builders.) This auction smooths out the differences in sophis-
tication between validators, as every validator’s value for being chosen as leader is
now typically just the (validator-independent) revenue that they can collect as an
auctioneer. Theorem 5.1 of [Bahrani et al. 2024] formally captures the effect of PBS
in the above model by showing that, with PBS and at least [ competitive builders,
the ratio in the expected rewards obtained by any two validators for a given block
production opportunity is 1 + O(1/logl). That is, for large I, a block production

4Because builders do not participate directly in the blockchain protocol and its decisions, builder
centralization is generally viewed as less concerning than validator centralization.
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opportunity is almost equally valuable to all validators.®

This result implies that, with PBS and in the notation of our model of investments
by proof-of-stake validators, the p;’s of any two validators differ by a factor of 1 +
O(1/log!). Plugging this into the equilibrium analysis of Theorem 3.3 shows that,
under our idealized version of PBS with n validators and [ builders,

1 1
n logl

for each validator 4. That is, in this model, PBS does indeed guarantee decentral-
ization in the validator set, despite heterogeneous validator sophistication.®

3.3 A Market for Block Production Rights

We now switch from analyzing the equilibria of currently implemented protocols to
exploring how Tullock contests have been proposed for use in future mechanisms.
We start by showing how Tullock contests can address some of the drawbacks of
PBS. As discussed above, a key part to PBS helping reduce centralization in the
validator set is the existence of a competitive block builder set. These builders spe-
cialize in constructing valuable blocks through many means such as unique trading
strategies, business relationships, sophisticated block-building algorithms, and bet-
ter networking infrastructure. The main downside to PBS is the set of builders may
become centralized. In practice, it may be that only a small number of entities can
consistently win block-building auctions and can reinvest those profits into gain-
ing even more market share. At the time of writing, 96% of Ethereum blocks are
built by just three different entities.” While block validation in Ethereum remains
decentralized, builders have tremendous power in deciding which transactions are
included in the running transaction sequence.

There have been discussions of alternative market structures to alleviate builders’
market power and encourage participation by a larger set of builders. One widely-
discussed idea is “execution tickets” [Drake and Neuder 2023], in which block pro-
duction rights are allocated by lottery rather than a first-price auction. The idea
is that a blockchain protocol would set a ticket price, with builders purchasing as
many tickets as they wish. For every slot, the protocol would select one of the
tickets uniformly at random, and the ticket owner would be granted exclusive block
production rights for that slot. Payments are made up-front, and are not refunded
even if the purchaser is never selected as a block producer. For the sake of this
analysis, we assume that block production rights cannot be resold once the lottery
winners are revealed.® [Neuder et al. 2024] describe how the non-resale setting is

5This result allows validators to build their own blocks as before (i.e., to ignore all the blocks
submitted by builders) but assumes that the builders, as specialized parties, are at least as pro-
ficient at block-building as the validator. More precisely, each builder draws their value for a
block production opportunity from a distribution that satisfies the monotone hazard rate condi-
tion and also first-order stochastically dominates the distribution of the validator’s value for the
block production opportunity.

61n practice, the stake distribution is also influenced by other factors, such as the different yields
offered by validators to those who delegate stake to them.

7See https://www.relayscan.io/ for real-time data on the Ethereum block-builder distribution.
8For a model that considers how this analysis changes when resale is permitted, see [Pai and
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mathematically equivalent to a Tullock context, with agents’ values for winning the
lottery their values for block production rights and the ticket price set to $1.

Model:

—Agent 7 has value v; for block production rights, and (risk-neutral) utility function
—Agent i purchases b; tickets at a cost of b;.
—Allocations are given by x; = b;/ 3, b;.

In the context of execution tickets, agents’ payments are direct transfers rather
than implied capital or operating costs.

Theorem 2.1 can be invoked again here, replacing the p;’s with v;’s. Define the
function

F(z) = gmax (1 - :o>

and let v* satisfy F(v*) = 1. Then at the (unique) equilibrium bid vector b, the
corresponding allocations x satisfy

,U*
T; = max <1 — ,O)
v;
for every .

Because execution tickets are effectively an implementation of a Tullock contest,
multiple participants invest at equilibrium and have a non-zero probability of win-
ning the block production rights for a slot. This contrasts with the “winner-take-all”
nature of first-price auctions (as used in today’s PBS), in which the participant with
the highest value wins with certainty at equilibrium. More generally, the execution
tickets design is applicable to any domain in which block production rights must
be allocated, including “layer-two” protocols and shared sequencers.’

3.4 Proof Marketplaces

For our last example, we turn to the emerging application of marketplaces for proofs,
and specifically for SNARKS (i.e., succinct noninteractive arguments of knowledge).
The point of a SNARK is to enable anyone to quickly verify that a computation was
carried out correctly (without redoing the computation). SNARKSs are useful for
a number blockchain-related applications. For example, one increasingly common
architecture for a blockchain protocol is for transaction processing (and correspond-
ing SNARK generation) to be carried out by a small number specialized “provers”
(somewhat analogous to the role of builders in PBS), with the (decentralized) set
of validators responsible only for SNARK verification. SNARKs are computation-
ally intensive to produce, and proof marketplaces are designed to coordinate the
clearing of the market for SNARK generation.

Proof marketplaces are two-sided markets, with agents who have demand for
proofs on one side and provers on the other side. For simplicity, we consider here

Resnick 2024].
9For example, Espresso Systems has proposed an execution tickets-style design for a shared se-
quencer [Biinz et al. 2024].
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a setting in which a single party demands a proof with multiple provers competing
to supply it. One approach to this procurement problem would be to run a reverse
first- or second-price auction. This approach runs the risk of a winner-take-all
outcome, with only the most efficient prover ever producing proofs. Inspired by the
successes of Tullock contests in blockchain-related applications discussed above,
[Roy et al. 2024] propose a similar mechanism for proof marketplaces to address
these centralization concerns. Below, we give a variation of their mechanism:

Model:

—The auctioneer (representing the buyer) posts a reward r for computing a proof ¢.

—Each prover has a cost ¢; for computing ¢.

—Each prover submits a nonrefundable bid b;, paid up front.'°

—Prover i* is randomly selected with probability ;(b) = b;/>_; b;.

—Upon computing and submitting ¢ to the auctioneer (which the auctioneer verifies
to be a correct proof), the prover ¢* is paid r.

Under this mechanism, agent ¢’s utility is U;(z;) = (r —¢;)z; and thus their profit
given a bid vector of b is

Thus, we get the classic Tullock contest setup in which each agent has a value of
r — ¢; for winning the lottery and we can again use Theorem 2.1 to calculate the
equilibrium. The auctioneer can expect multiple provers to compete provided r is
larger than the two smallest ¢;’s. More generally, if provers have distinct costs, for
each k € {1,2,...,n}, there is a corresponding range of rewards for which exactly k
provers will participate and receive non-zero allocations. Thus, if prover costs can
be treated as common knowledge, a buyer can use the equilibrium characterization
of Theorem 2.1 to choose a reward that incentivizes a target level of participation.

This mechanism for proof marketplaces relies on the fact that the auctioneer—
perhaps implemented as a smart contract on a blockchain—can easily and program-
matically verify the correctness of submitted proofs. The mechanism is applicable
more generally to procurement problems in which satisfactory service provision can
be easily verified and the auctioneer can credibly commit to paying out the reward
upon successful procurement.

4. OPEN QUESTIONS AND FUTURE DIRECTIONS

—Optimal fairness: What does it mean for a mechanism to be optimally “fair” or
“decentralized”? Is there a framework that micro-founds the optimal allocation
of service providers subject to “sufficient decentralization”?

—Optimality /uniqueness of Tullock contests: Under a suitable metric of
fairness or decentralization, are Tullock contests the best (or unique) mechanism
that is fair/decentralized and also sybil-proof?

10Tn a permissionless context in which anyone can participate as a buyer or prover, these payments
are burned rather than passed on to the buyer/auctioneer. (Otherwise, an agent might participate
as both a buyer and a prover; by submitting a large fake bid, it could collect the reward r along
with the payments made by the other provers.)
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—Guaranteed non-negative utility and sybil-proofness: One drawback of
Tullock contests is that the only way for a participant to guarantee itself non-
negative utility (no matter what the other players do) is to bid 0. In particular,
a participant that chooses its equilibrium bid may suffer negative utility if other
participants do not, for whatever reason, choose their equilibrium bids. Is this
property unavoidable for mechanisms that are sybil-proof and not winner-take-
all?
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Heterogeneous participation and allocation skews:
when is choice “worth it”?

NIKHIL GARG
Cornell Tech

A core ethos of the EconCS community is that people have complex private preferences and infor-
mation of which the central planner is unaware, but which an appropriately designed mechanism
can uncover to improve collective decisionmaking. This ethos underlies the community’s largest
deployed success stories, from stable matching systems to participatory budgeting. I ask: is this
choice and information aggregation “worth it”? In particular, I discuss how such systems induce
heterogeneous participation: those already relatively advantaged are, empirically, more able to
pay time costs and navigate administrative burdens imposed by the mechanisms. I draw on three
case studies, including my own work — complex democratic mechanisms, resident crowdsourcing,
and school matching. I end with lessons for practice and research, challenging the community to
help reduce participation heterogeneity and design and deploy mechanisms that meet a “best of
both worlds” north star: use preferences and information from those who choose to participate,
but provide a “sufficient” quality of service to those who do not.

1. INTRODUCTION

A deserved point of pride for the EconCS community is the integration into everyday
life the systems we have long studied, an integration often done in collaboration
with researchers. In New York City, I recently voted in a participatory budgeting
election and used ranked choice voting for a mayoral primary election; my neighbors
submit preferences to stable matching processes that assign their children to 3-k
(for three year olds), pre-k, kindergarten, middle school, and high school; and the
city has embraced crowdsourcing: whenever we encounter problems as mundane as
potholes or as serious as suspected lead in our water, we can submit a 311 report or
request a testing kit. Each of these systems represents a triumph of an underlying
community ethos: that the people have complex preferences and information of
which the government is unaware, but which an appropriately designed mechanism
can uncover to improve collective decisionmaking.

This article’s purpose is to raise a simple, perhaps surprising, question: is this
choice and information aggregation “worth it”? Just as democratic decisionmaking
generally privileges those who (can) vote, these systems skew public resource allo-
cation and decisionmaking in favor of those who (can) participate. And, as I will
describe, substantial empirical evidence has established that participation in these
mechanisms correlates with existing axes of privilege. Thus, we must ask whether
the gain in information aggregation is worth the cost—or have we, in the guise of
preference optimization, deployed ways to allocate scarce public resources to those
best positioned to take advantage? As I will argue, this question is central to the
legitimacy — and perceived legitimacy — of our systems.

My thesis is analogous to, and motivated by, those recently advanced in poli-

Author’s address: ngarg@cornell.edu
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cymaking, public interest technology, and behavioral economics. In their seminal
book, “Administrative Burdens: Policymaking by Other Means,” Herd and Moyni-
han [2019] argue that the information requirements to access rights such as voting
and Medicare — often imposed in the name of safety, fraud detection, and choice —
in practice cause people to not receive what they are entitled to. In their respective
books, Schank and McGuinness [2021] and Pahlka [2023] argue that poor technol-
ogy design — something as innocuous as long forms — contributes to this loss, even
when well-intentioned. In “Scarcity: Why Having Too Little Means So Much,”
Mullainathan and Shafir [2013] explain how poverty begets poverty, because it in-
hibits long-term planning in favor of urgent needs. All then argue that system
designers must design with this phenomenon — the time cost of participation — in
mind. Analogously, I argue that effective outcomes in the face of heterogeneous
participation must be a primary design goal for our field, if we want our informa-
tion aggregation mechanisms to be “worth it.” In other words, we should either
deem “equal” participation as a necessary precondition to using choice to allocate
scarce resources, or ensure that our mechanisms are robust despite heterogeneity.!

In this article, I first detail three case studies central to our community: com-
plex voting mechanisms, resident crowdsourcing, and school matching. In each, I
overview the promise and on-the-ground realities of how these systems affect collec-
tive decisionmaking. I highlight recent research, including my own, that has sought
to understand and close the gap caused by heterogeneous participation. I then sum-
marize shared patterns from the three case studies, including potential solutions and
design principles. Finally, I overview practical and research directions on the use
of choice to allocate scarce public resources. I challenge us to meet a “best of both
worlds” north star: use preferences and information from those who participate,
but provide a “sufficient” quality of service to those who do not. Simultaneously,
we should help develop approaches to support balanced participation.

2. CASE STUDIES
2.1 Complex democratic mechanisms

“Equal” voting rights and participation is central to democracy. Of course, equal
participation is difficult to achieve; in the United States, eligible voters who are
young, lower-income, racial and ethnic minorities, or have less formal education
are less likely to vote [Hartig et al. 2023]. These patterns are also present in two
democratic innovations advanced in the community: participatory budgeting and
deliberative democracy (“citizen assemblies”).

In participatory budgeting, voters select which community projects to fund, from
libraries in schools, to gym renovations, to park beautification. The Stanford Par-
ticipatory Budgeting Platform has helped run over 150 elections, each of which may
allocate millions of dollars [Gelauff and Goel 2024b]. New York City, Cambridge,
Paris, Porte Alegro, Budapest, Helsinki, and many other cities globally all run par-
ticipatory budgeting elections. At their best, these elections promise to increase

11 use the words, “equal,” “heterogeneous,” and “representative” informally. What exactly consti-
tutes equal, or equal enough, depends on context and may be subjective. See Chasalow and Levy
[2021] for a history and analysis of “representativeness” as a “foundational yet slippery concept.”
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civic engagement and ensure that project funding decisions are made by the peo-
ple, instead of elected representatives or administrators. In deliberative democracy
mechanisms, people (“panelists”) are selected to deliberate, potentially over several
days, over a prescribed set of issues; they are polled before and after regarding their
beliefs and sometimes are tasked to make recommendations; at their best, such pro-
cesses gather a diverse set of people to make decisions in accordance with what a
“public sample would think if it had better conditions and information with which
to explore and define the issues” [Fishkin 1991]. Such processes have been used in
over 25 countries, including to make constitutional amendments in Mongolia [Lee
2024], and EconCS researchers are involved in both building online deliberation
platforms and in selecting panelists [Fishkin et al. 2019; Flanigan et al. 2021].

Given time costs and the use of unfamiliar methods, ensuring representative par-
ticipation in these processes is a continuous, challenging task, on which researchers
have rightfully focused. Participatory budgeting is often conducted online and
open to all residents, including children and non-citizens; however, turnout rates
are sometimes low, including at or below 5% of eligible voters, and there may be
unequal participation rates by race, ethnicity, education, immigration status, and
home ownership [Zepic et al. 2017; Stewart et al. 2014; Hayduk et al. 2017]. Oth-
ers report that participatory budgeting increases civic engagement by otherwise
disadvantaged groups [Johnson et al. 2023], and there are mixed findings on its
distributive effects [Shybalkina and Bifulco 2019; Stewart et al. 2014].

Motivated by unequal participation in participatory budgeting, Gelauff et al.
[2020] and Shen et al. [2021] study targeted advertising for demographically bal-
anced participation. Gelauff and Goel [2024a] advocate for the design of “civic
feedback processes that are robust against disparities in the representation of de-
mographic and opinion minorities,” including reweighting techniques “for more eq-
uitable voice among demographic minorities which were underrepresented in the
process;” such reweighting could especially be appropriate for processes which are
consultative for policymakers as opposed to binding.

Analogously, motivated by unequal volunteer and dropout rates in deliberative
democracy, an important line of work shows how balanced panels can be selected
(“sortition”). Both individual fairness (volunteers should have sufficiently high se-
lection probabilities, even if from overrepresented groups) and overall representative
balance (on both observed and unobserved covariates) are important [Benade et al.
2019; Flanigan et al. 2020; Flanigan et al. 2021; Flanigan et al. 2021; Ebadian et al.
2022; Flanigan et al. 2023; Baharav and Flanigan 2024; Flanigan et al. 2024; Cara-
giannis et al. 2024; Ebadian and Micha 2025; Assos et al. 2025]. Their algorithms
have been deployed at scale to support panel selection [Flanigan et al. 2021].

What lessons does this literature provide? (1) Representative participation is seen
as a central design goal by researchers and practitioners, including in the EconCS
community—it is well accepted that an unrepresentative process is not legitimate,
though there is empirical equivocation on real-world participation disparities and
its effect on resource allocation. (2) Representative participation (and overall rates)
is nevertheless an ongoing challenge. In NYC participatory budgeting, fewer than
100,000 people vote city-wide,? far less than even other local elections such as for

2The exact number of people eligible is unclear, as it depends on the current number of residents
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Tree Planting Requests by ZIP Code Tabulation Are:

2000

Variable Coef p-value
1500 Intercept —13720 < 0.001

Log Population 967 < 0.001

Log Median In- 472 0.021
1000 come

Heat Vulnerability —149 0.019
500 Index

Fig. 1: In NYC, the number of tree planting requests by ZIP Code Tabulation Area in 2015-2024.
Controlling for population, requests correlate positively with neighborhood income and negatively
with a heat vulnerability index, a proxy for the need for shade. NYC no longer takes requests to
plant trees, and instead will develop a schedule that prioritizes the most heat vulnerable areas.

city council—and some have questioned its use for decisionmaking [Golliher 2025].
It thus remains unclear how to mitigate the effects of heterogeneous participation.

2.2 Resident crowdsourcing

Another type of system deployed at scale to influence public resource allocation
is resident crowdsourcing: people make service requests, such as through “311
systems” in the United States. NYC receives over 3 million requests a year—for
incidents ranging from fallen trees on powerlines, to potholes, flooding, rodents, and
to request new tree planting—and similar systems are in place in hundreds of cities
globally. This is an important avenue for the government to learn about problems —
supplementing and informing less frequent active inspections — and there is a large
government bureaucracy to respond to requests.

However, substantial research, including my own, has established that participa-
tion is heterogeneous, even conditional on ground truth conditions. For example,
in Liu et al. [2024], we show how to use duplicate reports about the same incident
to estimate reporting delays; in Agostini et al. [2024], we use spatial correlation to
probabilistically identify unreported incidents; in Balachandar et al. [2025], we com-
bine regularly scheduled government inspections with crowdsourced reports; and in
Franchi et al. [2025], we identify true flooding prevalence using a vision-language
model on dashcams street imagery. In all cases, despite the diverse identification
strategies, we find that (a) crowdsourced reporting data can be informative about
ground truth conditions, e.g., that more hazardous conditions are reported at far
higher rates [Liu et al. 2024]; but also (b) reporting is correlated with socioeco-
nomic characteristics, also substantially: e.g., in Liu et al. [2024], we find that
higher income, population density, voter participation, fraction of people with col-
lege degrees, and fraction of the population that is white all correlate with higher
reporting rates. These patterns induce heterogeneous delays in incidents being

over 11 years old in the city council districts that participated. There are almost 8 million residents
over 10 years old in NYC, implying a less than 2% turnout rate.
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addressed, potentially leading to inequitable government service.

What should we do given this heterogeneous participation? I do not believe that
these results imply we should not crowdsource this information; rather, we should
ensure efficient resource allocation despite it, as in the work to balance citizen
assemblies. For example, in a followup project, we seek to optimize inspection re-
sources to efficiently and equitably set service level agreements [Liu and Garg 2024];
it would be conceptually simple to account for heterogeneous reporting delays.

I believe that the design of such modifications is urgent, before practitioners
decide that information aggregation is not worth the resulting allocation skews.
NYC no longer allows the public to request new tree planting locations; instead, the
Department of Parks and Recreation will plant “street trees on a cyclical basis and
prioritiz[e] the most heat-vulnerable neighborhoods first” [New York City 2025b).
A simple analysis using public data [New York City 2024; 2025a] helps explains
why: as shown in fig. 1, planting requests historically correlated positively with
median neighborhood income and negatively with heat vulnerability, one measure
of “need.” Optimizing solely for stated resident preferences would lead to inefficient
allocation, when the government has some expertise. Such pullback may also occur
in other settings, if the mechanisms are not viewed as legitimate.

2.3 School matching

Finally, consider school matching. In many urban environments, students are as-
signed to public schools through the deferred acceptance algorithm [Abdulkadiroglu
et al. 2005]. The algorithm inputs applicant preferences (via ranked lists of schools)
and school priorities (with factors such as geography, academic performance, diver-
sity, and lottery numbers). The promise is twofold: (a) these systems provide the
opportunity to access desired schools, even if they are not in the student’s neigh-
borhood; (b) when slots in high-value schools are scarce, they are allocated not
solely due to geography but also accounting for student preferences, academic per-
formance, and random chance—thus, these allocation systems can be more effective
and equitable than those that simply reflect geographic segregation.

In practice, applying effectively can be time consuming for families: in NYC,
there are over 800 high school programs to choose from, each with varying loca-
tions, classes and sports teams offered, and school quality metrics. Families who
can afford it often pay for admissions consultant services. A long line of research has
empirically shown that information access, awareness, and the time-consuming pro-
cess — not just preferences — affects application behavior, both in NYC high school
admissions [Corradini 2024; Corradini and Idoux 2025] and elsewhere [Larroucau
et al. 2024; Tomkins et al. 2023; Arteaga et al. 2022; Ajayi and Sidibe 2020].

The “administrative burdens” [Herd and Moynihan 2019] of applying lead to par-
ticipation heterogeneity and outcome inequity. For example, Cohodes et al. [2022]
documents the large fraction of students who apply to non-competitive, “nonop-
timal” schools first in their rankings. In Peng et al. [2025], we show that such
behavior leads to substantial “undermatching”: students not matching to as high-
quality programs as they could have (that are no further geographically than their
actual match), because they did not apply. In particular, this gap between where
students matched and where they could have matched is almost twice as large for
the most competitive Black and Hispanic students as it is for the corresponding
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Asian and white ones, when quality is measured by program performance, value
add, selectivity, school graduation rate, or college enrollment rate. We then show
that simple application behaviors explain a large portion of this undermatching.
Including with surveys, Corradini and Idoux [2025] show that differential aware-
ness of schools rated as high-quality and racial homophily preferences explain such
gaps, as opposed to preferences over other characteristics like quality.

Substantial work has further gone into developing and evaluating informational
interventions to close the participation gaps [Corcoran et al. 2018; Arteaga et al.
2022; Cohodes et al. 2022; Corradini 2024; Larroucau et al. 2024]—for example,
by providing students lists of high-quality programs close to their neighborhood.
These interventions have changed behavior, when used.

Despite this focus, much work remains to be done. Informational gaps and het-
erogeneous participation persist, as documented by recent studies [Corradini and
Idoux 2025; Peng et al. 2025]. One constant challenge, highlighted by Cohodes
et al. [2022], is that informational interventions only work to the extent that they
are used, i.e., they put the burden on participants—just as targetted advertising for
participatory budgeting ultimately requires people to respond to the ads. Thus, it
remains open how to deploy (a) interventions with high takeup rates and (b) new
mechanisms robust to heterogeneous participation.

2.4 Common Themes and Implications

The above examples all follow a similar pattern: a mechanism allocates scarce
public resources or makes joint decisions; a core mechanism component is to input
preferences or information from participants; when the mechanism is deployed, par-
ticipation is heterogeneous, despite it being monetarily “free.” Such heterogeneity
both makes the mechanism less effective and potentially skews allocation and deci-
sionmaking against those already disadvantaged. While substantial work has been
done to measure and reduce these disparities, they persist.

Related concerns potentially apply in other settings in which preferences are
elicited from participants who may have heterogeneous capabilities: in refugee
matching, refugees may be asked for preferences over host countries [Jones and
Teytelboym 2017]; in food bank allocation, large food banks (but not small ones)
have dedicated staff to interface with the mechanism [Prendergast 2017]; in kid-
ney exchange, preference elicitation from doctors regarding compatible kidneys is
a practical challenge [Ashlagi and Roth 2021].

What should we do, given this fact pattern? In any given setting, the options
are to (a) defend the status quo, by establishing that the mechanism is nevertheless
effective, or at least preferable over any feasible counterfactual mechanism; (b) aim
to reduce participation heterogeneity, as behavior is far from fixed; (c¢) reform the
mechanism, so that it is robust; and/or (d) replace it entirely, likely to one that min-
imally uses the people’s preferences and information. How should we choose which
option(s) to pursue? Different applications have and should take different paths,
and the paths are complementary.® In the face of heterogeneous participation, we

3There are key differences between the applications. Voting leads to a collective decision, and
individuals who do not participate nevertheless benefit if they agree with those who do. In stable
matching, allocations are individual and more arguably ‘zero-sum.” Crowdsourcing lies in-between,
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defend standard democracy and invest substantially in voter turnout efforts; this is
also the path taken so far for participatory budgeting and deliberative democracy.
In other cases, we've seen either reform or a retreat from participatory mechanisms.

I posit that reform should aim for the following “best of both worlds” north star:
use preferences and information from those who choose to participate, but provide
a “sufficient” quality of service to those who do mot. In other words, we should
attempt to retain the benefits of public participation while mitigating the resulting
resource allocation skews. With this goal, we would still have “power users” who
benefit from their invested time; however, non-participation would lead to a rea-
sonable, default allocation. Of course, “sufficient” and “reasonable” are subjective,
and themselves policy choices; when allocating scarce resources, these defaults may
come at some cost to the “power users.” Policymakers and the public are in the best
position to choose the context-dependent operating point on the inevitable tradeoff
between information aggregation and allocation skews. My position is that this
choice should be explicit, as opposed to the too-common status quo of maximally
supporting aggregation at the cost of allocation skews.

3. APPROACHES FOR PRACTICE

In the remainder of this article, I highlight potential directions for practice and
research, in service of this goal. These paths are informed by the above literature
and Herd and Moynihan [2019] in particular. They lay out three reforms to respond
to the “Medicare Maze,” in which the elderly must annually learn about complex
options to choose a health care plan, leading to worse health outcomes and increased
costs: (1) reduce choice by simplifying options; (2) expand outreach and human
assistance in navigating the choices; (3) use administrative data and information
technology to provide personalized defaults or recommendations. These options
have their analogues for participatory mechanisms.

3.1 Reduce participation heterogeneity

The simplest response to participation heterogeneity is to try to reduce it. In partic-
ipatory budgeting, this is done via targeted advertising; in deliberative democracy,
this is done more directly by modifying selection probabilities.* This approach is
also a key tool to reduce disparities in the takeup of other entitlements, like SNAP
benefits in the United States; Koenecke et al. [2023] show public support for tar-
geted advertising that improves allocation equity. However, as continued disparities
prove, turnout efforts are not a panacea in the presence of structural barriers to par-
ticipation, such as those discussed by Mullainathan and Shafir [2013]. Approaches
that more directly tackle structural barriers, such as those that provide childcare
and video conferencing technology for deliberative democracy, may be necessary.
Another, more systematic approach to reducing participation heterogeneity is to
use preferences within areas with relatively homogeneous participation. For exam-

as allocations (e.g., pothole fixes) are geographically localized, but everyone may benefit from the
information shared by participants. The exposition has ignored these differences, as they are not
crucial to my core thesis. However, they may be relevant in considering paths forward.

4This is only possible because deliberative democracy purposely is designed to select a subset of
the people, with the goal of making that subset representative.
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ple, NYC runs participatory budgeting separately for each city council district, with
a set budget per district; if districts are drawn such that participation is similar
within each district, then heterogeneity across districts would not skew allocations.’
Analogously, in the tree planting context, the following approach could incorporate
geographic balance, need as determined by the agency, and resident requests: make
neighborhood-level scheduling and quantity decisions according to agency expertise;
then, within each neighborhood, allow requests to inform precise planting locations,
alongside expertise. Appropriately designed, such an approach could be “best of
both worlds” and combine elicited preferences with expert decisionmaking.

3.2 Provide personalized defaults or recommendations

Turnout campaigns may be effective when participation is (meaningfully approxi-
mated as) binary: in voting mechanisms and resident crowdsourcing, the most im-
portant outcomes are how regularly someone votes or submits requests. In school
matching, on the other hand, whether people submit ranked lists is not the only
concern, as doing so is required to enroll a child in public school. Rather, submit-
ting informed ranked lists is a challenge, as it requires awareness of program quality
and admissions probabilities; only some may have access to expensive consulting
services or advice from social networks to help them navigate these decisions. In
such systems, practitioners, alongside researchers, may be able to provide recom-
mendations or even default options to users. Then, applicants can — just as in the
status quo — provide preferences if they are dissatisfied with the recommendations
or defaults; others can choose to follow the recommendations. Of course, as with
targetted advertising, one challenge with recommendations is takeup [Cohodes et al.
2022], and so stronger user interfaces or “nudges” are important.

In many cases, as in school matching, there already is a default option, e.g., a
manual administrative placement if an applicant does not match with any school.
One approach is for these defaults to be more systemically planned, to provide
better allocations to those who do (can) not participate meaningfully. Recom-
mendations and defaults are also related to — and ‘lighter-touch’ than — another
approach developed in school matching: limiting options, potentially in a data-
driven manner: Shi [2015] develops short choice menus for each family in Boston,
citing “too many options” as contributing to long commute times, unpredictability,
loss of neighborhood cohesion, and a research burden on families; Allman et al.
[2022] develop small zones in San Francisco, in support of school diversity.

The use of personalized defaults and recommendations, powered by modern ma-
chine learning methods, may also be effective in other contexts. Ashlagi and Roth
[2021] advocate for a related approach in the context of preference elicitation diffi-
culties for kidney exchanges: “it may be useful to develop machine learning models
to predict positive crossmatches and ... to understand the trade-offs involved with
waiting (while on dialysis) for a better match.”

51t is not clear that NYC’s districts meet this criteria. My district spans relatively wealthy areas
in the Upper West Side, to Columbia University, to lower-income areas in West Harlem. However,
granular turnout data is unavailable and winning projects did not geographically concentrate.
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3.3 Actively acquire information or post-process inputs

A third approach is for the central system to actively invest in information acquisi-
tion to counter participation biases. When resident crowdsourcing informs resource
allocation, for example, agencies can invest more active inspection resources or in-
stall sensors (e.g., flood sensors [Franchi et al. 2025]) in neighborhoods with lower
reporting rates. Alternatively, given the public’s heterogeneous inputs, the sys-
tem can make decisions that are nevertheless balanced. As an example of such
post-processing, consider our work with the New York Public Library on the holds
system, which allows patrons to request books from any system branch to be sent
to their local neighborhood branch; we first found that heterogeneous usage of the
holds system (even conditional on overall library usage) led to a large net outflow of
books from lower-income neighborhoods to higher-income ones [Liu et al. 2024]. We
then designed a routing prioritization scheme between branches to mitigate such
disparities [Liu et al. 2025], so that all holds requests could be fulfilled without
disproportionately depleting branches in lower holds-use neighborhoods.

However, these approaches are not always feasible. In deferred acceptance, where
applicant preferences are directly used, it is unclear where active information ac-
quisition can be incorporated or how matches can be post-processed. In democratic
systems such as participatory budgeting, weighting votes may conflict with other
design principles, such as ‘one-person-one-vote’ (as discussed by [Gelauff and Goel
2024a]). Such approaches may be feasible when constructing error bars or using
vote outcomes to advise final decision-makers; however, the question of “represen-
tativeness” (and of whom) remains, especially when participation correlates with
unobserved features [Chasalow and Levy 2021].

These solutions are analogous to those proposed in algorithmic fairness, to counter
disparities in prediction accuracy that are caused by heterogeneous unobserved con-
founding or missing data. There, data may be actively acquired or post-processed
while using demographics as features [Chen et al. 2018; Noriega-Campero et al.
2019; Caton and Haas 2020; Cai et al. 2020; Garg et al. 2021; Liu and Garg 2021;
Movva et al. 2023; Zink et al. 2024; Balachandar et al. 2024; Dong et al. 2025;
Chiang et al. 2025]. There as well, post-processing may be infeasible, due to legal
constraints or a general preference for “group-unaware” approaches (e.g., the recent
affirmative action ban in college admissions in the United States, which also affect
algorithms in the admissions process [Lee et al. 2024]). More generally, I believe
that the goal of countering heterogeneous participation may further connect market
design to algorithmic fairness, cf. Finocchiaro et al. [2021].

All three approaches use central resources to counter heterogeneous participation
and pursue “best of both words”: use elicited preferences, but mitigate allocation
skews. Next, I discuss how researchers can contribute to the vision.

4. RESEARCH DIRECTIONS

Researchers have an important role to play in collaborating with practitioners on
designing, deploying, and evaluating the above approaches. Researchers—including
those who do not collaborate with practitioners—can also contribute in other ways.
Below, I overview three approaches for a diverse range of skillsets: (a) empiri-
cally quantifying heterogeneous participation; (b) providing theoretical insight on
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participation-allocation tradeoff and designing mechanisms to navigate it; (¢) more
directly considering human-computer-market interactions and interface design.

4.1 Empirically quantify heterogeneous participation

Academics — through open data, information requests, or practitioner collaboration
— can help quantify participation heterogeneity. Methodologically, the challenge is
that quantifying participation heterogeneity often requires disambiguating it from
other, less concerning, explanations. In resident crowdsourcing, we must show that
heterogeneous conditions cannot explain the discrepancy — that it is not the case
that some neighborhoods report less because they encounter fewer incidents worth
reporting [Liu et al. 2024; Agostini et al. 2024; Balachandar et al. 2025; Franchi
et al. 2025]. In school matching, we must show that heterogeneous preferences
— e.g., due to outside options or true heterogeneity in idiosyncratic preferences
for certain schools or school characteristics — do not fully explain behavior, and
that instead heterogeneous information plays an important role [Larroucau et al.
2024; Corradini and Idoux 2025; Corradini 2024]. This challenge often requires new
statistical methods, analyzing natural experiments, or careful collection of “ground
truth” data, such as through surveys and randomized controlled trials.

Such quantification helps provide an empirical underpinning with which inter-
ventions can be justified and well-engineered. For example, quantifying missing
incident reports by neighborhood helps in the allocation of inspection and sensor
resources in resident crowdsourcing, and quantifying heterogeneous awareness and
behavior informs the design of personalized recommendations in school matching.

Finally, I note that empirically quantifying heterogeneous participation is related
to two empirical lines of work: (1) preference estimation under strategic behavior
[Agarwal and Somaini 2018; Calsamiglia et al. 2020], where the goal is to estimate
preferences in non-strategyproof mechanisms, when (some) agents may be strategic;
(2) empirical behavioral economics, that seeks to quantify how human behavior
deviates from “optimal,” including in strategyproof mechanisms. Here, my focus
is on quantifying heterogeneous behavior and its effects on downstream resource
allocation, especially when there is no formal cost or strategic incentive.

4.2 Theoretically model allocation under heterogeneous participation and design mech-
anisms to explicitly navigate the participation-allocation tradeoff

Theoretical modeling of heterogeneous participation is a rich area for further study,
to complement empirical measurement. Models can (a) elucidate welfare outcomes
under heterogeneous participation; and (b) help design better mechanisms.

In the context of school matching, Kloosterman and Troyan [2020] analyze a
setting in which some students are more informed than others about high quality
options; under the model, such students may be worse off under deferred accep-
tance than without school choice; they then show that priorities may be designed in
a way to avoid this outcome. Pathak and Sonmez [2008] analyze matching settings
in which some students are “sophisticated” (strategic), while others are sincere de-
spite strategic incentives; while “sincere students lose priority to sophisticated stu-
dents” under the non-strategy-proof Boston mechanism, “any sophisticated student
weakly prefers her assignment under the Pareto-dominant Nash equilibrium of the
Boston mechanism to her assignment under the recently adopted student-optimal
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stable mechanism.” It is essential to develop such models for other settings, as
well as experiment with and deploy mechanisms with properties similar to the ones
developed by Kloosterman and Troyan [2020]. More generally, some mechanisms
may be more effective at supporting diverse participation.

One setting where such conceptual insights helped was the design of Feeding
America’s market mechanism to allocate food to food banks. As detailed by Pren-
dergast [2017], an essential consideration was to protect smaller food banks from
heterogeneous participation, as they have “fewer resources and manpower ... rela-
tive to their larger counterparts, where there are often dozens of workers or volun-
teers.” The chosen mechanism avoided a continuous auction (which would benefit
those with dedicated staff members) and allowed fractional bidding and storing
of credits. It further effectively enabled a default option, giving food banks “the
option to delegate bidding to an employee of Feeding America, where a food bank
could simply outline in broad terms its needs to that person” [Prendergast 2017].

A related question suitable for modeling insight is: under what contexts is the
participation-allocation tradeoff big, and when should we potentially abandon a
mechanism? This question has recently been explored in the context of individual-
level prediction to target resources: Shirali et al. [2024] argue that “prediction-based
allocations outperform baseline methods using aggregate unit-level statistics only
when between-unit inequality is low and the intervention budget is high,” i.e., that
the cost of individualized predictions may not be worth it; Perdomo et al. [2023] em-
pirically illustrate such ideas in the context of targeting interventions for students
at risk of dropping out of school. Wang et al. [2024] argue against the legitimacy of
decisionmaking that uses predictions of the future about individuals, due to reoc-
curring challenges regarding accuracy, disparate performance, and related concerns.
Analogously, it may emerge in a model that eliciting preferences is only worth it
when heterogeneity from preferences is larger than that from participation.

4.3 More directly consider human-computer-market interaction

Finally, the EconCS community should increase collaborations with human-computer
interaction (HCI) researchers, to build interfaces that more effectively allow equal
participation. Schank and McGuinness [2021] and Pahlka [2023] both pinpoint bad
interface design as worsening government service. I posit that (1) good interfaces
may be more effective than good theoretical properties in improving participation
and systems, and (2) qualitative studies are important to understand participation.
Here, I briefly overview my work and collaborations with HCI researchers.

In Bartle et al. [2025], we build and deploy an SMS-based system to help place
patients being discharged from hospitals into nursing care homes. In our context
in Hawai‘i, care homes are often run by retired nurses out of their own homes, with
only one or two patients; whenever a patient needs to be placed, a full-time team
of hospital social workers calls the approximately thousand nursing homes to see if
they have capacity and can care for the given patient’s needs. This preference infor-
mation is not centrally available because integration into a healthcare management
system like Epic does not work for this rural, single-operator population. As we
show, simply collecting capacity information — through SMS — and showing the data
to hospital social workers trying to place patients into homes improves the process;
my conjecture is that this data improvement — enabled by effective interface design
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for care home operators — is far greater than improved call recommendations, such
as through a matching optimization, would yield. However, one challenge is that
many homes do not share their preferences over patient characteristics with the
system. In followup work, we ran a randomized controlled trial and interviewed
care home operators to understand this participation gap [Bartle et al. 2025]. The
experiment revealed that nudges can (somewhat) increase the number of homes who
share their preferences, and the interviews uncovered complex cultural phenomena
as well as economic considerations that shape dynamic preferences. The mixed
methods approach and collaboration across fields was essential in understanding
participation and how interventions may increase it.

Substantial work has also shown that interface design can affect behavior in other
systems studied by the community. In participatory budgeting, substantial work
compares the behavioral and learning implications of the elicitation mechanism (i.e.,
whether they voters asked to rank or approve projects, or to modify a proposed
budget or give a full budget) [Gelauff et al. 2018; Garg et al. 2019; Garg et al.
2019; Goel et al. 2019; Gelauff and Goel 2024b]—with the hypothesis that some
mechanisms may be easier for voters to understand. In ratings systems, simple
modifications such as the question that is asked can substantially affect behavior, by
aligning different people on what “five stars” actually means [Garg and Johari 2019;
2021]. Similarly, I conjecture that interface design could reduce participation gaps
in other systems. While simplifying interfaces is likely to be generally useful, open
questions remain on how to best present information, including recommendations.
Future work should experimentally evaluate interfaces and qualitatively interview
participants regarding how they perceive a given interface and system design.

5. CONCLUSION

Economic and computational researchers have important roles to play in designing
and analyzing societal systems [Roth 2002; Abebe et al. 2020]. Our community
should be proud of our impact in influencing the deployment of so many real-world
systems. Undoubtedly, many of these systems improve upon those that they re-
placed. However, just as we theoretically design mechanisms to be strategyproof,
so that people can safely share their true preferences, we should focus on whether
people do participate on equal footing, or can do so in the presence of heterogeneous
time costs. We should further engineer our systems — theoretically, algorithmically,
and through interface design — so that they do not inadvertently allocate scarce
resources according to participation ability. In this article, I overviewed research,
including much of my own, in pursuit of this goal. I believe that “best of both
worlds” systems, that incorporate preferences without allowing heterogeneous par-
ticipation to skew distributional outcomes, are possible and necessary.
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Calibration is a classical notion from the forecasting literature which aims to address the question:
how should predicted probabilities be interpreted? In a world where we only get to observe (dis-
crete) outcomes, how should we evaluate a predictor that hypothesizes (continuous) probabilities
over possible outcomes? The study of calibration has seen a surge of recent interest, given the
ubiquity of probabilistic predictions in machine learning. This survey describes recent work on the
foundational questions of how to define and measure calibration error, and what these measures
mean for downstream decision makers who wish to use the predictions to make decisions. A uni-
fying viewpoint that emerges is that of calibration as a form of indistinguishability, between the
world hypothesized by the predictor and the real world (governed by nature or the Bayes optimal
predictor). In this view, various calibration measures quantify the extent to which the two worlds
can be told apart by certain classes of distinguishers or statistical measures.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-
tics

General Terms: Measurement, Reliability, Theory

Additional Key Words and Phrases: Calibration, Uncertainty quantification, Prediction, Decision
making

1. INTRODUCTION

Prediction is arguably the ubiquitous computational task of our time. Every day,
a remarkable amount of computational resources are invested in the prediction of
various probabilities, whether it is a language model trying to answer a user’s am-
biguous query or a recommendation engine trying to predict which product/profile
to show a user. These automated predictions affect nearly every aspect of our lives,
be it social, medical or financial. What makes prediction different from more classi-
cal computational tasks (such as sorting numbers or computing max-flows) is that
there is no well-defined notion of what constitutes correctness.

To explore this issue in greater detail, let us consider the simplified setting of
binary prediction, where nature is modeled as a joint distribution D* over attributes
x drawn from a domain X and labels y € ). In this article, we will mainly focus on
the setting ) = {0, 1} of Boolean labels.? We denote the marginal distribution over
X by D%, and ) by D3,. A predictor is a function p : X — [0,1]. The ground truth
in this setting is represented by the Bayes optimal predictor p*(z) = E[y*|x = z].

1We use boldface for random variables, thus x is random variable drawn from X whereas z € X’
is a point in the domain.
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The obvious formulation of correctness in prediction might be to learn p*. The
challenge is that we never see the values of p* itself, our only access to it is via the
labels y* which satisfy E[y*|x] = p*(z). So the obvious formulation of correctness,
as finding p which is close to p* under some suitable measure of distance, will
not work. There are (at least) two different and complementary approaches: loss
minimization and calibration.

1.1 Loss minimization

In loss minimization, we choose a loss function ¢ : {0,1} x [0,1] — R, and a
hypothesis class of predictors P = {p : X — [0,1]}, and aim to find the predictor
that minimizes
p=argmin E _[l(y",p'(x))].
pec (xy*)~D*

In essence, we use the labels y* as a proxy for p*, while ¢ plays the role of a
distance measure. But it turns out that (for any proper loss) we indeed find the
predictor in our family P that is closest to p*. This is a consequence of the bias
variance decomposition. Taking the example of squared loss £(y,v) = (y —v)?, the
decomposition tells us that for any predictor p, 2

Ely" =p)’] = Elpx) —p"(x)* ]+ Ely" = p"(x))°].

bias variance

Note that the variance is a property of p*, independent of p.

Loss minimization is a simple yet immensely powerful paradigm that powers much
of contemporary machine learning. But is it a satisfactory notion of correctness for
prediction tasks? Here are some questions to consider:

—Imagine that a decision maker is using a predictor to make decisions that min-
imize their own loss function. This loss may differ from the one used to train
the model, and might differ across various decision makers. For instance, we
could use forecasts about rain to decide whether or not to carry an umbrella, to
decide whether to have a party outdoors or indoors, or whether to turn off the
sprinklers. Each of these has its own loss function. Say our loss for carrying an
umbrella when it does not rain is 0.1, and for not carrying an umbrella when
it rains is 0.9. The optimal strategy here is to carry an umbrella on days when
p*(x) > 0.1. Now suppose that the predictor p we have access to is not Bayes
optimal. How do we make decisions using this predictor? Should we carry an
umbrella whenever p(xz) > 0.1, just like with the Bayes optimal predictor, or
should we make decisions differently?

—We know that the squared loss decomposes into bias and variance, but we have
no way of knowing how large each of these are. If we suffer large squared loss,
it could because nature is inherently random (e.g p* is often close to 1/2), or
because nature is deterministic but sufficiently complex that it looks random to

21t is easy to prove a similar statement about any proper loss, and a little harder to prove it about
arbitrary losses. But the takeaway remains the same: by minimizing loss over a family P, we find
the best approximation to p* from P under a suitable notion of distance tailored to the loss.
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our hypothesis class P. Loss minimization does not distinguish between these
scenarios.

—Suppose we wish to predict the probability of rain tomorrow, and the model p
found by minimizing squared loss gives a 60% chance of rain. How should we
interpret this prediction? Is it possible that although p minimizes expected error
globally, it is not particularly good at prediction for certain types of days (like
days in September)? Concerns like these arise naturally in the context of fair
predictions for subgroups (see the discussion on multicalibration in Section 1.4).

The question of what a prediction really guarantees naturally leads us to calibration.

1.2 Calibration

Calibration is a notion of correctness that focuses on ensuring that predicted proba-
bilities align with actual outcomes. Intuitively, on days when a calibrated predictor
predicts a 60% chance of rain, it rains 60% of the time. Formally, we can define
perfect calibration as follows:

Definition 1.1. The predictor p : X — [0,1] is perfectly calibrated under the
distribution D* if for every v € Image(p), it holds that E[y*|p(x) = v] = v.

A key property of calibration is that it simplifies downstream decision making.
For instance, let us return to the problem of using the forecast about rain to decide
whether or not to carry an umbrella, where our loss for carrying an umbrella when
it does not rain is 0.1, and for not carrying an umbrella when it rains is 0.9. Now
suppose that the predictor p we have access to is not Bayes optimal, but it is
calibrated. If we are basing decisions solely on p, then the optimal strategy is still
to carry an umbrella on days when p(xz) > 0.1. The expected loss we would suffer
is exactly what we would have suffered if our predictor were Bayes optimal.

This naturally motivates an alternate view of calibration as a notion of correct-
ness for predictors based on indistinguishability from the Bayes optimal, which
will be an important theme in this survey. This view is inspired by the outcome
indistinguishability framework of [Dwork et al. 2021].3

To every predictor p : X — [0,1], we can associate a distribution DP on pairs
(x,y?) where the marginal on x is D% and where E[y?|x] = p(x). The Bayes opti-
mal predictor for DP is p. Perfect Calibration requires that the joint distributions
(p(x),y?) and (p(x),y*) be identical.

LEMMA 1.2 PERFECT CALIBRATION AS INDISTINGUISHABILITY. The predictorp :
X —[0,1] is perfectly calibrated under the distribution D* iff the joint distributions
J* = ((p(x),y*)) and J? = (p(x),y?) on [0,1] x {0,1} are identical.

Let us see why this is true. Since the marginal distribution of x is the same
in both cases, the distribution of p(x) is also the same. In essence, we require
that the distributions y*|p(x) and yP|p(x) be identical. Since the latter is the
Bernoulli distribution with parameter p(x), we require the same for y*|p(x), which

3That work does not consider calibration per se, it instead considers more general notions such
as multicalibration from [Hébert-Johnson et al. 2018]. In the context of calibration, it is plausible
that this indistinguishability viewpoint predates it, though we have not found a reference.
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is the standard definition. This guarantee conditional on each prediction is the key
strength of calibration as a prediction guarantee.*

The indistinguishability property asserts that p(x) be a plausible explanation
for the observations y* given x, in that the conditional distribution of y*|p(x)
is consistent with the hypothesis that p(x) is the Bayes optimal predictor. This
indistinguishability property is desirable in machine learning, where we often try
to model complicated processes (like the likelihood of a medical condition) and are
unlikely to find the true Bayes optimal. Calibrated predictors are considered more
trustworthy, whereas a predictor that is not calibrated will fail some basic tests:
the probability of the label being 1 conditioned on p(x) = v is not wv.

In the bigger picture, the notion of indistinguishability has played a central role
in several disciplines within theoretical computer science, cryptography and pseu-
dorandomness to name just a couple, indeed its roots go back to the Turing test.
Viewing calibration as a form of indistinguishability lets us draw on ideas from
those areas when we seek to define approximate calibration or generalize our no-
tions beyond the binary classification setting.

1.3 From perfect to approximate calibration

Perfect calibration is a clean abstraction, but predictors trained and used for pre-
diction tasks in the real world are seldom perfectly calibrated. For calibration to be
a useful notion, we need to define what it means for a predictor to be approximately
(but not perfectly) calibrated, and we need efficient methods to measure calibration
error. How to do this in a principled manner is the main focus of this article.

There are many desiderata that one might hope a notion of approximate calibra-
tion satisfies:

(1) Tt should preserve the desirable properties of calibration, such as indistinguisha-
bility and simple downstream decision making, in some approximate sense.

(2) It should be efficient to measure the calibration error of a given predictor, just
from black box access to samples of the form (p(x),y*), both in terms of sample
complexity and computational complexity. In an online setting (to be defined
shortly), we might wish for our notion to have low-regret algorithms.

(3) The notion should be robust to small perturbations in the predictor. A tiny
change to a calibrated predictor should not result in a predictor with huge
calibration error. For instance, changing the days forecast from 60% to 59.999%
should not result in wild swings in the calibration error.’?

(4) The notion should extend beyond binary classification, to multiclass labeling
and regression, while maintaining properties like efficiency.

Achieving all of these properties is not easy. The classical notion of calibration
error, which is the expected calibration error or ECE, only satisfies property (1)
above; we will discuss this in more detail in Section 3. An active line of recent

40f course, there might be a different calibrated predictor that only puts the chances of rain at
30%. There is no contradiction because the level sets of the predictors over which we average are
different in the two cases.

5This is especially desirable from a machine learning perspective, where the lower order bits of
prediction are considered insignificant and typically disregarded in low-precision arithmetic.
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research has yielded a rich theory of approximate notions of calibration, together
with algorithms for computing them efficiently in various models. Yet, to date,
there is no single notion that satisfies all four desiderata mentioned above!

Perhaps this is too much to hope for, since some of these desiderata (eg. ro-
bustness and low-regret algorithms) arise from different motivating scenarios. But
a clear takeaway from this body of research is that approximate calibration is
surprisingly challenging to define and measure. The key technicality in defining
approximate calibration error comes from conditioning. Every definition of calibra-
tion involves some form of conditioning on predictions. While this conditioning is
simple for perfectly calibrated predictors, it is far trickier for predictors that are
not perfectly calibrated, since predictions are real-valued.

In this survey, we will highlight how the indistinguishabilty viewpoint on calibra-
tion guides us in formulating what approximate calibration should mean. At a high
level, there are two approaches to this task:

—Limit the set of distinguishers : Rather than require J* and JP be identical,
we ask that they look similar to a family W of distinguishers. The calibration
error is measured by the maximum distinguishing advantage achieved over all
distinguishers in W. This approach is directly inspired by cryptography and
pseudorandomness.

—TUse a divergence/distance on distributions: Since J* and J? are both dis-
tributions on the domain [0, 1] x {0, 1}, we can use distance measures/divergences
on probability distributions (e.g., total variation, earthmover) to measure the dis-
tance between them, and use this as our measure of the calibration error. As we
will see, this view relates to a quantification of the economic value of calibration
from the perspective of downstream decision making.

These approaches lead to a number of calibration error measures that we will
explore in more detail in this article, and which have many advantages over ECE
and other traditional calibration measures. We will analyze smooth calibration
error [Kakade and Foster 2008], which satisfies properties (1-3) but not (4). It also
corresponds to an intuitive notion of approximate calibration, where the predictor
is close to some perfectly calibrated predictor in earthmover distance.

From the computational standpoint, the natural model in which to study cal-
ibration has been the online setting, where we measure the regret or calibration
error of our prediction strategy over T' time steps.® The classic work of [Foster
and Vohra 1998] showed that sublinear calibration error, as measured by ECE is
possible. The regret rate achieved in their work is O(T%/3).7 Tt is known that
regret rates of O(v/T) or even O(v/T) are not possible for ECE [Qiao and Valiant
2021], and figuring out the optimal regret achievable is an active area of research
(see, e.g., [Dagan et al. 2025]). However, new notions of calibration, which we will
discuss in this survey, actually admit prediction strategies that achieve O(\/T ) or
OWT ) regret rates [Qiao and Zheng 2024; Arunachaleswaran et al. 2025; Hu and
Wu 2024].

6Note that the computational task of learning a calibrated predictor admits trivial solutions in
the offline model; for instance, one can always predict the expectation of the label.
"The regret rate is T’ times the calibration error on the uniform distribution over the T time steps.
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1.4 Limitations and generalizations

Calibration is clearly a desirable property for a predictor, but it has limitations,
and cannot be considered as a standalone notion of goodness for a predictor. We
ideally want predictors to have both good calibration and other properties like small
expected loss. We discuss these limitations below, and use this as motivation to
introduce the stronger notion of multicalibration [Hébert-Johnson et al. 2018], and
discuss how it addresses these limitations.

Calibration does not guarantee utility. There are many predictors that will satisfy
calibration, and we would not consider all of them to be equally informative or good.
For instance, the average predictor p that always predicts the average label Ep-[y*]
is perfectly calibrated, as is the Bayes optimal p*. Any reasonable loss function
would distinguish between these predictors, but calibration (by itself) does not.

Calibration gives guarantees on average over the entire population. In some appli-
cations, this might not be good enough. For instance, suppose we train a predictor
to predict the risk of a certain risk of disease for a patient. On examining the data,
we find that although the predictor is calibrated over the general population, it is
miscalibrated for patients with a certain medical history, who are a small fraction
of the dataset (so this does not affect the overall calibration error too much). We
would not trust such a predictor to make decisions for those patients.

Multicalibration. Multicalibration, introduced in [Hébert-Johnson et al. 2018], is
a strengthening of calibration. It requires that our predictions are calibrated, even
when conditioned on membership in a rich collection of demographic subgroups
C C 2%. Which subgroups to consider is an important consideration, which is
dictated by the data and computational resources available to the predictor. We
refer the reader to [Hébert-Johnson et al. 2018] for more details.

Although calibration by itself does not guarantee good loss minimization, mul-
ticalibration with respect to rich class of subgroups C does imply strong loss min-
imization. This was the key insight in the work of [Gopalan et al. 2022] which
introduced the notion of omniprediction. Omniprediction asks for a predictor that
is as good as benchmark class C not just for a single loss function, but for any
loss from a large family of loss functions. [Gopalan et al. 2022] shows a surpris-
ing connection between omniprediction with respect to a benchmark class C and
multicalibration with respect to C.

From the indistinguishability perspective, [Dwork et al. 2021] showed that multi-
calibration is equivalent to indistinguishability of the distributions (¢(x), p(x),y*)
and (¢(x),p(x),y?) for all ¢ : X — {0,1} that lie in some family C of functions.
Beyond its original motivation in multigroup fairness, multicalibration has proved
to be tremendously powerful, finding applications to omniprediction [Gopalan et al.
2022], domain adaptation [Kim et al. 2022], pseudorandomness [Dwork et al. 2023],
and computational complexity [Casacuberta et al. 2024].

Organization of this survey. In Section 2, we consider expected calibration error
(ECE) and explore its weaknesses. In Section 3, we introduce weighted calibra-
tion measures which capture the notion of indistinguishability to limited classes
of distinguishers. This unifies several different notions of approximate calibration
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in the literature. In Section 4, we describe Calibration decision loss, which looks
at calibration from an economics perspective, through the eyes of a downstream
decision maker who wants to use the predictions of a predictor to optimize their
utility. We review the active area of research on online calibration in Section 5.
Given the number of calibration notions that we will encounter, a natural question
is whether there is some ground truth notion against which we can compare these
different notions. In Section 6, we define the distance to calibration, which pro-
poses a ground-truth notion of what approximate calibration ought to mean, and
show how smooth calibration shows up naturally in this setting. In the interest
of brevity, we omit most proofs from the survey. We direct the interested reader
to the arXiv for a fuller version of this article that includes full proofs and some
additional material.

2. EXPECTED CALIBRATION ERROR

We start with what is arguably the most popular metric for measuring calibration
error: the expected calibration error or ECE. We examine some of its shortcomings,
which will guide us in formulating other notions of approximate calibration.

Definition 2.1. The expected calibration error of a predictor p under D* is defined
as ECE(p, D*) = E [E[y*|p(x)] — p(x)]|-
Some notes on the definition of ECE:

—While perfect calibration requires E[y*|p(x)] = p(x), ECE allows for some slack
in the equality, and measures the average deviation over all p.

—We have defined ECE as measuring the absolute deviation between E[y*|p(x)]
and p(x). We could instead have used the square or the g*" power for ¢ > 1 and
defined ECE,(p, D*) = E[| E[y*|p(x)] — p(x)|?]*/9. By the convexity of t7, ECE,
is an increasing function of q.

For a better understanding of ECE, we look at two alternative characterizations.

The first characterizes it in terms of the maximum inner product with a distin-

guisher b which is a bounded function on [0, 1].

LEMMA 2.2. Let B = {b: {0,1} — [=1,1]} be the family of all bounded func-
tions. Then ECE(p, D*) = maxpep E - [b(2)(y* — p(x))].

For two distributions Dy, Dy on a domain X, we define

TV(D1,D2) = max D1(S) — Da(9)].#

We state the second characterization in terms of total variation distance.
LEMMA 2.3. We have ECE(p, D*) = TV(J*, J?).

The trouble with ECE. At first glance, ECE seems to be a reasonable measure
of calibration error. However there are (at least) a couple of problems with it: it is
hard to efficiently estimate (even in the binary classification setting), and it is very
discontinuous. Thus it fails desiderata (2-4).

8When the space X is infinite, we must restrict S to be measureable, but we will ignore this and
other such subtleties.
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The computational difficulty stems from Lemma 2.2. Estimating the ECE is
equivalent to finding the best witness b € B. This is essentially a learning prob-
lem over a class with infinite VC dimension. Indeed, one can show that sample
complexity of estimating ECE can be as large as Q( \/m ). Ideally, we would like
to complexity to be independent of the domain size, and depending only on the
desired estimation error.

The continuity problems are hinted at by Lemma 2.3. While total variation
distance is a good distance measure for distributions over discrete domains, it is
not ideal for continuous domains. And our setting involving distributions over
predictions in [0, 1] is inherently continuous. As the next example illustrates, ECE
turns out to be highly discontinuous in the predictions of our predictor.

—Let Dy be the uniform distribution a two point space {(a,0), (b,1)}, where a is
always labeled 0 and b is labeled 1.

—Consider the predictor pg which predicts 1/2 for both a and b. It is perfectly
calibrated, hence ECE(pg) = 0.

—For € > 0, define the predictor p. where p.(a) = 1/2 — €,p.(b) = 1/2 + €. Tt is
easy to verify that ECE(p.) =1/2 —e.

Think of € being infinitesimally small but positive, so that p. is extremely close to
po. Intuitively, pe is very close to being perfectly calibrated, it only requires a small
perturbation of the lower order bits. Yet, the ECE is close to 1/2 for p., whereas
it is 0 for pg.

There are many ad-hoc fixes in practice that aim to get around these difficulties.
For instance, bucketed ECE divides the interval [0, 1] into b equal sized buckets,
rounds the predictions in each bucket (say to the midpoint) and then measures the
ECE of the discretized predictor. But [Blasiok et al. 2023a] observe that this results
in a bucketed ECE which oscillates between 0 and 1/2 — ¢ depending on whether
the number of buckets is odd or even!

Are our issues with ECE small technicalities or symptoms of a bigger problem?
We believe it is the latter. Assume you are training a predictive model, and you
measure its ECE and find it to be large. Is this something you should worry
about? Is your model truly miscalibrated (whatever that means)? Or is there an
infinitesimal perturbation of its predictions that will make it perfectly calibrated?
In general, there are sound reasons to prefer metrics that are reasonably smooth.
It is also important for estimation to be efficient in terms of both samples and
computation, which is not the case for ECE.

3. WEIGHTED CALIBRATION ERROR

In this section, we will explore notions of approximate calibration that only require
that J* and JP look similar to a family W of distinguishers or weight functions.
This results in a general template called weighted calibration, which is parametrized
by the family W. Instantiating this notion with the family of bounded Lipschitz
functions, we derive the notion of smooth calibration [Kakade and Foster 2008].
We briefly describe some other notions of calibration from the literature that can
be viewed as instantiations of this template.
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3.1 Weighted calibration

Weighted calibration error [Gopalan et al. 2022] captures the extent to which a
collection of distinguishing functions are able to distinguish J* from JP. Since
J* and JP are both distributions over [0,1] x {0,1}, we consider distinguishing
functions f : [0,1] x {0,1} — [—1,1]. Since the second argument to f is Boolean,
we can write f(v,y) = w(v)y + u(v). Hence,

E[f(v.y")] - Elf(v.y")] = Elw(v)y] - Efw(v)y"] = Efw(v)y’] - Efuw(v)v]
= E(v)(y" V)] (31)

where the first and third equalities hold because v is identically distributed under
J* and JP, and the second is because E[y?|v] = v. This tells us that we can
limit ourselves to distinguishers of the form f(v,y) = w(v)y, and the distinguishing
advantage can be thought of as an expectation under the single distribution J*
(Equation (3.1)). This leads to the following definition from [Gopalan et al. 2022].

Definition 3.1 Weighted calibration error [Gopalan et al. 2022]. Let W = {w :
[0,1] — [=1,1]} be a family of weight functions. The W -weighted calibration error
of the predictor p : X — [0, 1] is defined as

CEw (p, D) = mag | E[w(p(x)(y" — p(x))]|.

The definition of weighted calibration error suggests a natural computational
problem: the problem of calibration auditing for a weight family W. This is the
computational problem of deciding whether CEyw (p, D*) is 0 or exceeds «, given
access to random samples (p(x),y*) from D*. This problem turns out to be closely
related to agnostic learning for the class W, as shown by [Gopalan et al. 2024].

If we instantiate weighted calibration with W = B where B is the set of all
bounded functions introduced in 2.2, we recover ECE. But this also illustrates why
ECE is hard to compute efficiently: the set B has infinite VC dimension, hence it
cannot be learnt efficiently.

Note that we could have defined the weighted calibration error CEy, as a function
of J*, the joint distribution of (p(x),y™*), rather than the pair (p,D*). We prefer
mentioning p explicitly for clarity, but it is important to note that CEy, only
depends on J*. Indeed, most common measures of calibration error and loss only
depend on the distribution of J*. For instance, the cross-entropy loss and square
loss only depend on how labels and predictions are jointly distributed, not on
whether we are labeling images or tabular data; if we predict p(xz) = 0.7 and
the label is 1, that fixes the loss suffered at z, regardless of the features x.

3.2 Smooth calibration

Smooth calibration, introduced by [Kakade and Foster 2008] is an instantiation
of weighted calibration that restricts the class of weight functions to Lipschitz
continuous functions. This ensures that small perturbations of the predictor do not
result in large changes in the calibration error.

Definition 3.2. Let L = {l : [0,1] — [—1,1]} denote the subset of 1-Lipschitz
functions from B. Define the smooth calibration error of the predictor p under the
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distribution D* as smCE(p, D*) = CEL(p, D*).

By only allowing Lipschitz weight functions, Smooth calibration ensures that the
calibration error does not change dramatically under small perturbations of the
predictor.? Given predictors py, ps : X — [0, 1] and a distribution D* on X, let the
expected ¢; distance between them be

d(p1,p2) = E[lp1(x) = p2(x)]]-
Smooth calibration error is Lipschitz in this distance.
LEMMA 3.3. For any weight family W C L, CEyw (p, D*) is 4-Lipschitz in d.

Returning to the example above with py and pe, restricting to Lipschitz distin-
guishers means that smooth calibration considers p. to also be well calibrated, since
its smooth calibration error is O(e).

An alternate view of smooth calibration is in terms of earthmover distance be-
tween J* and JP. Consider the ¢; metric on [0, 1] x {0, 1} where ¢;((v,y), (v',y')) =
v — V| + |y — ¢|. For two distributions J,J" on [0,1] x {0,1}, we denote the
earthmover distance between two distributions under the ¢; metric as EMD(J, J').
Smooth calibration captures the earth-mover distance between J* and JP.

LEMMA 3.4. We have EMD(J*,J?)/2 < smCE(p, D*) < EMD(J*, JP).

This lemma should be contrasted with Lemma 2.3, which characterizes ECE in
terms of the total variation distance.

We have defined smooth calibration error in terms of the family of 1-Lipschitz
distinguishers. But since an L-Lipschitz function for L > 1 can be made 1-Lipschitz
by rescaling the range by L, the calibration error can only increase by L even if we
allow L-Lipschitz distinguishers.

3.3 Other notions of weighted calibration

We have seen two notions of weighted calibration so far: ECE and smCE. Several
other calibration metrics that have been considered in the literature can be naturally
viewed as instances of weighed calibration. We list some of them below.

—Low-degree calibration [Gopalan et al. 2022] corresponds to the case where W =
P, consists of degree d polynomials. This class is fairly Lipschitz (since polyno-
mials have bounded derivatives. The main attraction of this notion is that it is
efficient to computer, even in the multiclass setting.

—In Kernel calibration [Kumar et al. 2018; Blasiok et al. 2023a] the family of
weight functions lies in a Reproducing Kernel Hilbert Space. There are many
choices of kernel possible, such as the Laplace kernel, the Gaussian kernel or
the polynomial kernel, each of these results in distinct calibration measures with
their own properties.

9Note that Lemma, 2.2 tells us that there exists a bounded function be that explains the high ECE
for pe, specifically, be(v) = sign(v — 1/2). This function is discontinuous near 1/2, which causes
the extreme sensitivity to perturbations.
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4. CALIBRATION ERROR FOR DECISION MAKING

In this section, we will explore a second approach to relaxing the definition of
perfect calibration, where rather than asking J* and JP be identical, we require
them to be close when measured under a suitable divergence. This leads to another
important measure of the calibration error, the Calibration Decision Loss (CDL),
introduced recently by Hu and Wu [Hu and Wu 2024]. Underlying the notion of
CDL is a concrete and natural quantification of the economic value of calibration
from the perspective of downstream decision making.

We define the notion of CDL in Section 4.1 and discuss its alternative formulation
using Bregman divergences between J* and JP in Section 4.3. A key tool we use
to prove this Bregman divergence formulation is a classic characterization of proper
scoring rules [McCarthy 1956; Savage 1971; Gneiting and Raftery 2007].

4.1 Calibration Decision Loss

The definition of the Calibration Decision Loss comes naturally when we look at
calibration through an economic lens, from the perspective of downstream decision
makers. What does calibration mean to a person who uses the predictions (e.g.
chance of rain) to make downstream decisions (e.g. take an umbrella or not)? We
will show that a calibrated predictor provides a concrete trustworthiness guaran-
tee to every payoff-maximizing downstream decision maker (Theorem 4.1). This
observation gives not only a characterization of perfect calibration, but also a nat-
ural way of quantifying the calibration error of a miscalibrated predictor, using the
payoff loss caused by trusting the (miscalibrated) predictor in downstream decision
making. This way of quantifying the calibration error leads exactly to Calibration
Decision Loss (Definition 4.2).

We start by formally defining decision tasks. A decision task 7 has two com-
ponents: an action space A and a payoff function u : A x {0,1} — R. Given a
decision task 7 = (A, u), the decision maker must pick an action a € A in order
to maximize the payoff u(a,y) € R. Here, the payoff depends not only on the
chosen action a, but also on the true outcome y € {0,1} unknown to the deci-
sion maker. For example, if the outcome y € {0,1} represents whether or not it
will be rainy today, a natural decision task may have two actions to choose from:
A = {take umbrella, not take umbrella}. Each combination (a,y) of action and out-
come corresponds to a payoff value u(a,y) that may depend on the susceptibility
to rain and the inconvenience of carrying an umbrella.

Prediction enables decision making under uncertainty. While the decision maker
is unable to observe the true outcome y before choosing the action, we assume
that they are assisted by a prediction v € [0,1]. In the ideal case, the prediction
correctly represents the probability distribution of the true outcome. That is, the
outcome y follows the Bernoulli distribution with parameter v (denoted y ~ v). To
maximize the expected payoff, the decision maker should choose the action

or(v) € argmax E u(a,y) (4.1)

acA Y™V
in response to the (correct) prediction v. We call the function o7 : [0,1] — A the
best-response function. Throughout the section, we assume that each decision task
T = (A4,u) is associated with a well-defined best-response function. That is, we
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focus on tasks 7 where the argmax in (4.1) is always non-empty.

In reality, predictions are seldom perfectly correct. It is thus unclear whether
applying the best-response function would still lead to optimal payoff. The following
theorem tells us that as long as the predictions are calibrated, the best response
function remains the optimal mapping from predictions to actions, allowing the
decision maker to trust the predictions as if they were correct.

THEOREM 4.1 CALIBRATED PREDICTIONS ARE TRUSTWORTHY. Let D be a joint
distribution on X x {0,1}. For any perfectly calibrated predictor p : X — [0,1] and
any decision task T = (A,u), it holds that

E |u(o X)), = max E |u(lo(p(x)),y)]. 4.2
LE TGy = max B oGy (42
In other words, the mazimum value of the expected payoff is attained when we choose
o = o7. Conversely, if (4.2) holds for every decision task T, then the predictor p
is perfectly calibrated.

We defer the proof of Theorem 4.1 to Section 4.2 and discuss how it suggests a new
calibration measure. According to the theorem, if a predictor p is miscalibrated,
then the right-hand side of (4.2) is larger than the left-hand side for some decision
task 7. The difference between the two sides is exactly the payoff loss incurred
by the decision maker who follows the best-response strategy o7 assuming (incor-
rectly) that the predictions were calibrated. Thus, a natural measure of the level of
miscalibration is exactly this payoff loss. For a fixed decision task 7, this payoff loss
is termed the Calibration Fized Decision Loss (CFDL) [Hu and Wu 2024]. Taking
the worst-case payoff loss over all decision tasks T = (A, u) with bounded payoff
functions u : A — [0,1], we get the Calibration Decision Loss (CDL).

Definition 4.2 Calibration Decision Loss (CDL) [Hu and Wu 2024]. Let D be a
joint distribution over X x {0,1}. Given a predictor p : X — [0, 1], we define its
Calibration Fized Decision Loss (CFDL) with respect to a (fixed) decision task
T =(A4,u) as

CFDLr(p, D) := max =~ E [we@E).y)]- E luorpx)y).
We define the Calibration Decision Loss (CDL) of the predictor p as the supremum
of the CFDL over all decision tasks (A, ) where the payoff function u : A — [0, 1]
has its range bounded in [0, 1]:
CDL(p, D) := sup CFDLy(p, D).
T=(Au),u:A—[0,1]

As we will see when we prove Theorem 4.1 in Section 4.2, the CDL is zero if and only
if the predictor p is perfectly calibrated. If a predictor is not perfectly calibrated
but has a small CDL, any decision maker can still trust the predictor as if it were
calibrated without losing too much expected payoff. This holds because the CDL
is the supremum of the CFDL over all payoff-bounded decision tasks.

We note that in the definition of CDL, decision tasks are restricted to have a
bounded payoff function w : A — [0,1]. This restriction is only for the purpose
of normalization: multiplying the payoff function by any positive constant changes
the corresponding CFDL by the same constant factor, whereas adding a constant
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to the payoff function does not change the CFDL. There is no further restriction
on the decision tasks beyond bounded payoff functions. In particular, the action
set A can have arbitrary (even infinite) size. A small CDL implies that trusting the
predictions will incur small payoff loss for all such decision tasks.

A natural question is how the CDL is related to other measures of the calibration
error. We will prove that the CDL is quadratically related to the ECE:

THEOREM 4.3 [KLEINBERG ET AL. 2023; HU AND WU 2024]. Let D be a joint
distribution over X x {0,1}. For any predictor p : X — [0, 1],

Moreover, the quadratic relationship between CDL and ECE shown in Theorem 4.3
is tight (up to lower order terms): for any e € (0,1/10), there exist two pairs
(p1,D1), (p2, D2) such that

ECE2(p1’D1) =&, CDL(pl,Dl) = 2¢;
ECE(p2,D2) = ¢, CDL(pg, D2) < &% 4+ O(e?).

We defer the proof of Theorem 4.3 to Section A.7. Here we briefly describe the two
tight examples. The first example (p1, D1) is very simple. For (x,y) ~ Dy, we draw
y € {0, 1} from the Bernoulli distribution with parameter 1/2+¢, independent of x.
The predictor p; is the constant predictor p;(z) = 1/2. In the second example, we
draw x uniformly at random from the interval [, 1] and then draw y € {0,1} from
the Bernoulli distribution with parameter x — €. The predictor p, is the identity
function pa(z) = x for x € [g,1]. We will prove the correctness of the examples in
Section A.8.

The second example, (p2,D2), demonstrating that the CDL can be significantly
smaller than the ECE, is quite instructive. It opens up the possibility that the
CDL can be minimized at a faster rate than what is possible for ECE in the online
setting. Indeed, the main technical result of [Hu and Wu 2024] gives an efficient
online CDL minimization algorithm achieving rate O(v/T'logT), overcoming the
information-theoretic lower bound Q(7°-543%9) for ECE [Qiao and Valiant 2021;
Dagan et al. 2025] (see Section 5 for more discussions).

To conclude this subsection, CDL measures the calibration error using the payoff
loss of downstream decision makers caused by mis-calibration. In addition to in-
troducing CDL as a meaningful decision-theoretic measure of calibration, the work
of [Hu and Wu 2024] also shows that CDL allows a significantly better rate than
what is possible for ECE in online calibration, which we discuss in Section 5.

In Section 4.2 we give a simpler yet equivalent definition of the CFDL in (4.5),
which leads to an interpretation of CDL through the lens of indistinguishability.

4.2 Characterization of the Maximum Expected Payoff

In this section we prove Theorem 4.1. We start by giving a characterization of the
maximum expected payoff on the right-hand side of (4.2) for a general predictor
p that may or may not be calibrated, which simplifies the definition of CFDL and
will be useful in the proof.

Recall the definition of the recalibration p of p (Definition 6.4): p is obtained by
replacing each prediction value v = p(x) with the actual conditional expectation
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Ely|p(x) = v]. Clearly, p is perfectly calibrated. If p is perfectly calibrated, then
p = p. We have the following characterization of the maximum expected payoff
achievable by post-processing p (see Section A.3 for proof):

LEMMA 4.4. Let D be a joint distribution on X x {0,1}. For any predictor
p: X — [0,1] and any decision task T = (A,u), it holds that

maE o)y = B fulor(p60).y)) (4.4)

where p is the recalibration of p.

We can now rewrite the definition of CFDL (Definition 4.2) based on Lemma 4.4:

CFDLy(p.D) = B _lu(or(p(x).y)] = E_[uler@e).y).  (45)

This expression allows us to easily calculate the CFDL for specific decision tasks.

For example, consider the task 73 = (A, u) where the action space A is the unit
interval A = [0,1], and the payoff function is quadratic:

u(a,y) =1— (a—y)? €[0,1], fora€[0,1] and y € {0,1}.
The corresponding best-response function is the identity: o7 (v) = v. Plugging it
in (4.5), we obtain an equality between the CFDL and the square of ECEy:

CFDL7(p. D)= E [(p(x) ~¥)* ~ (Blx) ~¥)’]

= E[p(x)* - p(x)* + 2y (p(x) — p(x))]

= E[p(x)* — p(x)* + 2p(x)(p(x) — p(x))] (E[y|p(x),p(x)] = p(x))

= E[(p(x) — p(x))*] = ECEz(p, D)*. 4.6)
We are now ready to prove Theorem 4.1.

PrROOF OF THEOREM 4.1. If p is perfectly calibrated, then p = p, and (4.2)
follows immediately from Lemma 4.4. For the reverse direction, if (4.2) holds
for any decision task, then in particular, it holds for the task 72 above, implying
CFDL7, (p, D) = 0. By (4.6), we have ECEy(p, D) = 0, so p is perfectly calibrated,
as desired. Since the quadratic payoff function of 73 has a bounded range [0, 1], this
proof also implies that the CDL of a predictor is zero if and only if the predictor is
perfectly calibrated. [J

4.3 The Bregman Divergence View of CDL

We show that the CFDL of a predictor p w.r.t. any decision task 7 can be expressed
as a Bregman divergence D, (J*||J?) between the two joint distributions J* and
JP (Theorem 4.9). Our proof uses a classic characterization of proper scoring rules
[McCarthy 1956; Savage 1971; Gneiting and Raftery 2007].

We start with the definition of Bregman divergence.

Definition 4.5 Bregman Divergence. Let ¢ : [0,1] — R be a convex function and
let Vo : [0,1] = R be its subgradient. For any pair of values u*, € [0, 1], their
Bregman divergence w.r.t. ¢ is

Do (™) := o(p”) = @(p) = Veo(p) - (1" — ).
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Since V(u) is a subgradient of ¢ at u, the Bregman divergence is always nonneg-
ative. When p = p*, the Bregman divergence becomes zero.

We will interpret the values p*, u € [0, 1] in the definition above as the parameters
of two Bernoulli distributions. For example, if we choose (1) to be the negative
Shannon entropy of the Bernoulli distribution with parameter u:

() = plnp— (1 —p)In(l — p),

then the Bregman divergence becomes the KL divergence between the two Bernoulli
distributions parameterized by p* and u:
* * Il'l/* * 1- /”'*
D =" ln— 1-— 1 .
(W) = n nﬂ+( M)nlfu
The following key theorem makes the connection between Bregman divergences and
decision tasks.

THEOREM 4.6. For any decision task T = (A,u), there exists a convex function
¢ :[0,1] = R with subgradient Vi : [0,1] — R such that

u(or(v),y) = () + Vep(v) - (y —v) for every v € [0,1] and y € {0, 1}.

To prove the theorem, one should first observe that the function u(or(v),y) is a
proper scoring rule. That is, for any v,v’ € [0, 1], we have

JE ulor(v),y) =2 E u(or(v'),y),

which follows from the definition (4.1) of the best-response function 0. The theo-
rem then follows from a standard characterization of proper scoring rules [McCarthy
1956; Savage 1971; Gneiting and Raftery 2007].

We can now write the expected payoff achieved by a predictor p using the Breg-
man divergence between p and its recalibration p (see Section A.4 for proof):

LEMMA 4.7. Fiz a joint distribution D of (x,y) € X x {0,1}. Letp: X — [0, 1]
be a predictor and p be its recalibration (Definition 6.4). Then for any decision task
T = (A, u) and the corresponding convex function ¢ from Theorem 4.6,

Efu(or (p(x)), ¥)] = Ele(3))] ~ E[D, () [p(x))], (47)
CEDLy(p, D) = E[D, (3(x)[p(x))] (48)

We now generalize the definition of Bregman divergence to joint distributions,
such as J* and JP, over the domain [0, 1] x {0,1}.

Definition 4.8 Induced Bregman Divergence between Joint Distributions. Let ¢ :
[0,1] — R be a convex function and let Vi : [0,1] — R be its subgradient. For
any joint distribution J of (v,y) € [0,1] x {0,1}, we use p;(v) = E;[y|v] € [0,1]
to denote the parameter of the Bernoulli distribution of y conditioned on v. Let
J1, J2 be a pair of joint distributions of (v,y) € [0, 1] x {0, 1} that share the same
marginal distribution of v and denote this marginal distribution by M. We define
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the Bregman divergence between J; and Jy induced by ¢ as'®
Dy(hllT2) = _E, [Dy(pis, (V)i (¥)]

Combining Lemma 4.7 and Definition 4.8, we have a Bregman divergence char-
acterization of the CFDL for any decision task 7 (see Section A.5 for proof).

THEOREM 4.9 BREGMAN DIVERGENCE VIEW OF CFDL. Let D be a joint dis-
tribution over X x {0,1}, and let p : X — [0,1] be a predictor. As before, given
(x,¥*) ~ D, we draw yP from the Bernoulli distribution with parameter p(x),
and use J*, JP to denote the distributions of (p(x),y™) and (p(x),y?), respectively.
Then for any decision task T = (A,u) and the corresponding convex function ¢
from Theorem 4.6, CFDL(p,D) = D, (J*|J?).

4.4 Further Work

As we discuss in this section, the defining property of CDL is that it provides a
meaningful guarantee on the swap regret incurred by downstream decision makers
who trust the predictions. However, CDL is undesirable in other aspects: like ECE,
it is discontinuous and requires high sample complexity to estimate. Recent work
of [Rossellini et al. 2025] introduces the notion of cutoff calibration error to address
the sample complexity issue while maintaining a restricted form of the decision-
theoretic guarantee of CDL (e.g. they consider the regret relative to monotone
post-processings of the predictions). This notion of cutoff calibration is essentially
identical to the notion of proper calibration from [Okoroafor et al. 2025], who give an
algorithm achieving 6(\/T ) error rate for proper calibration in the online setting
(see Section 5 for the setting). The works of [Blasiok et al. 2023b; Blasiok and
Nakkiran 2024; Hartline et al. 2025] show that low smooth calibration error also
gives certain decision-theoretic guarantees. In particular, these works show that
it implies low regret for certain forms of Lipschitz post-processings or for decision
makers who make randomized responses (e.g. by adding noise to the predictions),
though this implication often comes with a quantitative loss (e.g. smooth calibration
error being at most ¢ only implies an O(1/€) regret).

5. ONLINE CALIBRATION

We have discussed a variety of ways to quantify the calibration error of a given
predictor. In this section, we turn to the algorithmic question of constructing a
predictor with low calibration error. This question, when naively formulated, ad-
mits a trivial and unenlightening solution: one can simply construct a constant
predictor that assigns (an approximation of) the overall average E[y] to every indi-
vidual z. This is a well-calibrated predictor according to every calibration measure
we have discussed. Thus, for the algorithmic question to be insightful, it is essential
to formulate it in such a way that reaches beyond the trivial solution. The seminal
work of Foster and Vohra [Foster and Vohra 1998] introduced one such interesting
question that turned into an active area of research with exciting recent progress:

100ne can also view Dy (J1]|J2) as the Bregman divergence corresponding to the negative entropy
@(J) of any joint distribution J of (v,y) € [0,1] x {0,1} defined by ®(J) := E(y yy~sle(ps (V)]
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calibration in online prediction. We will first describe the problem setting and then
briefly survey some key results in the literature.

The online prediction problem has T rounds indexed by t € [T]. In round ¢, our
algorithm makes a prediction p; € [0, 1], and nature reveals an outcome y; € {0,1}.
For example, we can interpret the problem as predicting the chance of rain each
day for T' days, where p; is the prediction we make on day ¢, and y, = 1 if day
t is rainy. Since the rounds are ordered chronologically, we allow our algorithm
to choose p; as a function of the history Hy—1 = (p1,..-,Pt—1,Y1,---,Yt—1), and
similarly, y; can depend on the history H;_; as well.

To evaluate the calibration error of the prediction sequence py . 7 := (p1,...,pr)
w.r.t. the outcome sequence y1, 7 := (y1,...,yr), we consider the predictor p :
{1,...,T} — [0,1] that assigns prediction p(t) := p; to each time step t =1,...,T.
Viewing each time step as an individual, we let D be the uniform distribution over
the individual-outcome pairs (¢, y;) for t = 1,...,T. By slight abuse of notation, we
can transform any calibration measure CAL for (p, D) into a calibration measure
CAL for (p1,....17,y1,.. ) as follows:

CAL(p:1,.. r,w1,..7) =T CAL(p, D).

Once a calibration measure CAL is chosen, our goal is to design a prediction
algorithm that guarantees a small (e.g. sub-linear, i.e., o(T)) calibration error ac-
cording to CAL, regardless of how the outcomes y; are generated. We wish to
design a prediction algorithm P that specifies how p; should be chosen as a func-
tion of the history H;_; for every round ¢. We want the calibration error to be
small regardless of nature’s strategy Y, which specifies how y; should be chosen
as a function of H;_; for every round ¢. That is, we want to solve the following
optimization problem:

min'gnize max CAL(p1,.. 7 y1,...,7), where p1,_p,y1... 7 is generated by P and Y.

For some calibration measures (e.g. ECE and CDL), it is necessary to use random-
ized prediction algorithms to achieve sub-linear rates. Such an algorithm constructs
a distribution P over prediction strategies P to solve the following problem:

inimi E [CAL .
minimizemax E_[CAL(p1,...7,91,..7)]

Here is why randomized predictions are necessary for achieving sub-linear rates
for ECE or CDL. For every deterministic prediction algorithm P, nature can infer
the prediction p; based on the history H;_1, and can then choose y; = 1 if and only
if p; < 1/2, incurring an (7T') rate for ECE and CDL.

In Table I, we summarize the current best upper and lower bounds on the optimal
online calibration rates for a few calibration error measures we discussed earlier,
which is an active topic for recent research. Notably, the only calibration measure
in this table that does not allow an O(v/T) rate is ECE.

There are substantial gaps between the best upper and lower bounds for many
calibration measures in this table, making it a natural question to close or reduce
these gaps. Very recently, the works of [Peng 2025] and [Fishelson et al. 2025] have
achieved significant progress on online calibration algorithms in the multi-class
setting, opening up another exciting area for future research.
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Calibration Error Rate Upper Bound Rate Lower Bound

Expected Calibration Error ~ O(T2/3) Q(T/2) [Folklore]

(ECE) [Foster and Vohra 1998]
Q(T0-528)
[Qiao and Valiant 2021]
O(T2/375) Q(T0A54389)
[Dagan et al. 2025] [Dagan et al. 2025]
Distance to Calibration O(T'/?) [Qiao and Zheng 2024]  Q(T'/3)
[Blasiok et al. 2023a) [Arunachaleswaran et al. 2025]  [Qiao and Zheng 2024]

Smooth Calibration Error O(T'/?) [Qiao and Zheng 2024] QT/3)
[Kakade and Foster 2008] [Arunachaleswaran et al. 2025]  [Qiao and Zheng 2024]

Calibration Decision Loss

1/2 1/2
(CDL) [Hu and Wu 2024] O(T*/?1ogT) [Hu and Wu 2024] Q(T*'/?) [Hu and Wu 2024]

Table I. Upper and lower bounds on the optimal rates for online calibration

6. THE DISTANCE TO CALIBRATION

At this point, we seem to have a Cambrian explosion of approximate calibration
measures, each of which has their own desirable properties, and will give different
calibration errors for a predictor. How should we compare these different measures,
and decide which to use? Is there any notion of ground truth, that would guide
us in this choice? In this section, we present one possible answer to this question
via the notion of the distance to calibration [Blasiok et al. 2023a]. We show that
the smooth calibration error gives us the best approximation to this ground-truth
measure in an information-theoretic sense.

Recall that we defined D* to be the joint distribution of x, y*, whereas J* denotes
the joint distribution (p(x),y™*).

Definition 6.1 Distance to calibration [Blasiok et al. 2023a]. Given a distribution
D*, define Cal(D*) to be the set of predictors g : X — [0, 1] such that g is perfectly
calibrated under D*. Define the true distance to calibration of the predictor p as

dCE(p, D) = s égli(nD*) d(p, q)-

This definition formalizes the intuition that a predictor which can be made per-
fectly calibrated by a small change to its predictions is close to being calibrated.
A desirable property that follows immediately from this definition is that the dis-
tance to calibration is continuous (unlike ECE). In fact, dCE is Lipschitz con-
tinuous: if we chance our predictor p to a different predictor p’ that is e-close
to p (Jd(p,p’) < €|), the distance to calibration can only change by at most e
(|dCE(p, D*) — ACE(p’, D*)| < €). This continuity property can be easily proved
using the triangle inequality for the metric d.

Despite its intuitiveness and continuity, dCE differs from the other notions of
calibration we have seen so far in a crucial way: it depends on the feature space
X (at least, syntactically). This dependence comes about because both the set
Cal(D*) of perfectly calibrated predictors and the distance metric d depend on
X. The definition of dCE does not give any hints about how one might go about
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computing or approximating it.

It is natural to ask to what extent dCE actually depends on the space X, and if
it can be approximated by a calibration measure which is independent of X'. This
leads us to two new definitions.

Definition 6.2 [Blasiok et al. 2023a]. The upper distance to calibration dCE(J*)
is the maximum of dCE(p’, D’) over all spaces X', distributions D’ on X’ x{0,1} and
predictors p’ : X’ — [0, 1] such that the distribution J' = (p/(x’),y’) is identical to
the distribution J* = (p(x),y*). The lower distance to calibration dCE is defined
analogously, replacing the maximum by minimum.

By their definition, both dCE and dCE achieve the goal of only depending on J*
and not D*. It also follows that

dCE(J*) < dCE(p, D*) < dCE(J*).
This leads to two questions:

(1) The definitions of dCE and dCE seem rather cumbersome at first, since they
involve optimizing over a possibly infinite collection of feature spaces and pre-
dictors. Are there more tractable characterizations of these notions, ideally
ones that will let us estimate them efficiently?

(2) How far apart are dCE and dCE? An ideal situation would be that they are
always equal, or at most a constant factor apart. If so, either of them could
serve as a good approximation for dCE, assuming we find efficient ways to
compute them.

In the following subsection, we will show that the largest gap between the upper
and lower distances is quadratic (dCE(J*) < 4,/dCE(J*)), and that the smooth
calibration error gives a constant-factor approximation to the lower distance to
calibration. Together, these results let us efficiently approximate the distance to
calibration using smooth calibration error, as in the work of [Hu et al. 2024].

6.1 Characterizing and Relating the Upper and Lower Distances to Calibration

In this subsection, we answer the two questions above. Specifically, we give simple
characterizations for the upper and lower distances in Theorems 6.6 and 6.7. We
show that the two distances are at most quadratically apart in Theorem 6.9.

We first give a simpler characterization of the upper distance. We begin with
some definitions needed to state the characterization.

Definition 6.3 Calibrated post-processing. Define the set K (J*) to be the set of
post-processing functions that, when applied to p, give a perfectly calibrated predic-
tor. Formally, K (J*) = {x :[0,1] — [0,1] s.t. (k(p(x)),y*) is perfectly calibrated.}

We observe that the set K (J*) is non-empty, since the constant predictor which
predicts E[y*] is calibrated, and this corresponds to the constant function £¥(v) =
E[y*] for all v. A more interesting post-processing is ™ (v) = E[y*|v], and we
call the post-processed predictor p(x) := "% (p(x)) the recalibration of p: this
predictor keeps the same level sets as p, and changes the predictions to be calibrated.
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Definition 6.4 Recalibration. Fix a distribution D of (x,y) € X x {0,1}. We
define the recalibration of a predictor p : X — [0, 1] to be another predictor, denoted
by p: X — [0, 1], where p(x) := Ep[y|p(x)].

LEMMA 6.5. It holds that ECE(p, D*) = d(p,p) = d(p, k™ op), where o denotes
function composition.

In general, the set K (J*) could be much richer and possibly induce closer cali-
brated predictors. In particular, there often exist post-processings xk € K (J*) such
that d(p, x op) is much smaller than d(p, k' o p) = ECE(p, D*). For the two point
distribution Dy considered before, we have seen that ECE(p, D2) = 1/2 — € whereas
it follows that k*¥ = 1/2 and d(p,1/2) =e.

[Blasiok et al. 2023a] give the following characterization of the upper distance.

THEOREM 6.6. [Blasiok et al. 2023a] We have

dCE(J") = i d(p,kop) = Lon Elr(p(x)) = p(x)[-
This theorem tells us that the upper distance of a given predictor p is exactly
its distance to the closest perfectly calibrated predictor that can be obtained by
applying a post-processing « to p.

Let us sketch the proof idea. K(J*) is the set of relabelings of the level sets
of p which result in a calibrated predictor. For any space X', distribution D’ and
predictor p’ where J' = J*, applying the post-processing function x € J* results in a
perfectly calibrated predictor x(p’) on X’. Hence the distance from such predictors
is always an upper bound on dCE. For the space X" where each level set is a single
point, these are the only calibrated predictors, so the bound is tight.

We now turn to the lower distance. The good news is that the characterization is
in terms of a calibration measure that we have encountered previously: the smooth
calibration error smCE(p, D*). The proof however is more involved, we refer the
reader to [Blasiok et al. 2023a; Blasiok and Nakkiran 2024].

THEOREM 6.7 [BLASIOK ET AL. 2023A]. We have
smCE(p, D*)/2 < dCE(J*) < 2smCE(p, D*)

This theorem lets us efficiently approximate the lower distance to calibration,
up to a constant factor, by computing the smooth calibration error. An efficient
algorithm for computing the smooth calibration error is given by [Hu et al. 2024].

We now address the question of how close the upper and lower distances are.
Assume that all we know about the predictor p and distribution D* = (x,y*) is
the distribution J* = (p(x),y*). Does this specify dCE(p, D*) completely? Or
is there still some uncertainty about how far the closest calibrated predictor is,
depending on the space X? The answer (perhaps surprisingly) is that there is
quadratic uncertainty in the distance, given J*.

COROLLARY 6.8. No calibration measure based on J* can distinguish between
the cases where dCE(p, D*) > n and dCE(p, D*) < 2n%.

We present an example illustrating Corollary 6.8 in Appendix B. Specifically, we
construct pairs of predictors and distributions (p1, D7) and (p2, D3) so that J* is
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identical in both cases, but dCE differs by a quadratic factor. It turns out that this
quadratic separation is in fact the worst possible.

THEOREM 6.9 [BLASIOK ET AL. 2023A]. We have dCE(J*) < 4,/dCE(J*).

We discuss the proof of this theorem in Appendix C following the original approach
of [Blasiok et al. 2023a] via the notion of interval calibration error.

Conclusion.

The classic notion of calibration needs to be rethought in order to satisfy require-
ments like robustness and computational efficiency, motivated by applications to
machine learning and decision making. This leads to a rich set of new questions,
in terms of what are desirable properties for approximate calibration notions to
have and new algorithmic challenges that arise from trying to achieve these prop-
erties. This is a broad and active area of research that spans machine learning,
decision making and computational complexity. There are several questions that
still remain, such as efficient and meaningful notions of calibration for the multi-
class setting [Gopalan et al. 2024] and the generative setting [Kalai and Vempala
2024]. We hope to have given the reader a feel for this in the survey, by highlighting
the motivating questions, the definitional challenges and the algorithmic issues.
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A. DEFERRED PROOFS
A.1 Proof of Lemma C.2

PrOOF. Let w; = E[p(x)|p(x) € I;], and note that w; € I;, a property that will
be used shortly. We can write

intCEp(p, J*) = width(B —|—ZPr x) € I;]|v; — w;]. (A1)

We now bound d(p, ¢g) as

d(p,q) = Ellp(x) — gp(2)[]
= Z Pr{p(x Ellp(x) — v;llp(x) € 1]
< Z Pr[p(x) € I;] (E[lp(x) — w;llp(x) € I;] + [w; —v;])

Z Prp(x) € I;])width(B Z Prip(x) € I;]|v; — w;|

JE[K] JE[k]
= intCEg(p,J*) (By equation(A.1))

where the penultimate line uses the fact that conditioned on p(x) € I, |p(x) —w;| <
width(B) since both values lie in the interval I;. O

A.2 Proof of Lemma C.4

PROOF. Let 8 be a width parameter to be chosen later. We consider the bucket-
ing B where the first interval is [0, b] for b picked randomly from the interval [0, 5].
Every subsequent interval has width S (except possibly the last, which might be
smaller). Denote the intervals by Iy,. .., Ij.

For the predictor ¢, the calibration error term for B is 0 since

CEg(q) = Y |E[1(g L)y —a(x))]| < / Prig(x) = ]| E[(y" —q(x)]a(x)
jEk v€[0,1]

So we will try the bound the calibration term for p by comparing it to ¢ and
arguing that if they are close by, this error is small.

CEg(p,D*) = > _|E[(y* — p(x))(p(x) € I)]|
JjEk
<D IE[(y" — gGo)I(p(x) € )] + > | El(g(x) — p(x))I(p(x) € I;)]]
jek jek
(A.2)
We bound each of these terms separately. To bound the second term,
> 1E[(g(x) = p(x))I(p(x) € I))]| = Ellg(x) — p(z)]] < § (A.3)

Jj€Ek
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For the first term, we have

Y IEY" —ax)Ip(x) € I <Y E[(y" — a(x)(a(x) € I;)]|+

jek jek
|E[(y" — q(x))L(p(x) € I;) — L(g(x) € I;)]
< Z [I(p(x) € I;) — I(q(x) € L;)]

where we use CEg(q,D*) =0 and |y* — ¢(x)| < 1. The RHS is 0 if p(x) and ¢(x)
land in the same bucket, else it is 2. p(x) and ¢(x) land in different buckets if there
is a bucket boundary between them, which happens with probability bounded by
|p(x) — q(x)|/8 over the random choice of b. Hence we can bound

SRl — a)Ip() € 1)]| < QE“?’(X)B*‘](X)” - %5 (A4)
JjEk

Plugging Equations (A.3) and (A.4) back into Equation (A.2) and choosing § =
V26,

CEg(p,D*) <6 +25/8.
intCEg(p, D*) < CEg(p, D*) 4+ width(B) < 8+ 6 + 2V < 4V/5.
[}

A.3 Proof of Lemma 4.4

PROOF. The lemma can be proved by considering the level sets X, = {z €
X : p(x) = v} for v € [0,1]. Within each level set, p is a constant function, and
the functions o(p(x)) formed by all choices of o : [0,1] — A are all the constant
functions on this level set taking value in A. Moreover, for any level set X, the
conditional distribution of y given x € X,, is the Bernoulli distribution with param-
eter p(x), where p(x) is also a constant function for z € X,. Decomposing (4.4) by
the level sets, the lemma follows from the definition of the best-response function
orin (4.1). O
A.4  Proof of Lemma 4.7

PrOOF. By Theorem 4.6,

Elu(or(p(x),y))] = Elp(p(x)) + Ve (p(x)) - (y = p(x))]
[p(p(x)) + Vo(p(x)) - (p(x) — p(x))]
(because E[y[p(x)] = p(x))

[o(p(x))] = Elp(p(x)) = ¢(p(x)) = Ve (p(x)) - (P(x) = p(x))]

[o(P(x))] — E[Dy (p(x)[p(x))]-
This proves Equation (4.7). Similarly,

Efu(o7(p(x). y)] = Elp(p(x))] — EID, (GE)[15(x))] = Elo(500))]
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Taking the difference between the two equations above, we have
CFDLy(p, D) = Elu(or(7(x),y))] ~ Elu(or(p(x), y)] = ELD,(FEx)lIp(x))]
This proves Equation (4.8). O

A.5 Proof of Theorem 4.9

PROOF. Let p be the recalibration of p (Definition 6.4). By the definitions of J*
and JP, for any = € X, we have

~,

p- (p(x)) = p(=), (A.5)
pr(p(@)) = p(x)- (A.6)
Let M denote the marginal distribution of p(x) where (x,y*) ~ D. By Lemma 4.7,

CFDL7(p, D) = E[Dy (p(x)|[p(x))]

= E Dy ()l (v))]

= Dy (J*[| 7).

O

A.6  V-shaped Divergences

In this subsection, we discuss a fundamental result about Bregman divergences
(Theorem A.1) that will be used to prove Theorem 4.3.

CDL focuses on decision tasks 7 = (A, u) with [0, 1]-bounded payoff functions « :
A — [0,1]. For such tasks, the corresponding convex function ¢ from Theorem 4.6
must have bounded subgradients:

Vo) =u(or(v),1) —u(or(v),0) € [-1,1] for every v € [0, 1]. (A7)

While the convex functions ¢ with bounded subgradients Vip(v) € [—1,1] form a
large family, a fundamental result by [Li et al. 2022, which we include as The-
orem A.l below, shows that the divergences D, defined by this family can be
captured by extremely simple functions ¢ that are termed V-shaped functions.
Specifically, for each v* € [0, 1], a V-shaped function ¢,~ is defined as follows:

©p (V) = |v —v*|  for every v € [0,1].

The Bregman divergence D, . is correspondingly termed a V-shaped divergence,
and it can be easily computed as follows: for vy, vy € [0,1], we have

Dy,. (v1][v2) = {

The following theorem gives an upper bound on the expected divergence D, for a
general ¢ with bounded subgradient in terms of V-shaped divergences D, . .

2lvy — v*| < 2|v1 —wal, if v* € (v1,v9] or if v* € (va,v1]; (A.8)
0, otherwise. '

THEOREM A.l [LI ET AL. 2022]. Let ¢ : [0,1] = R be a convex function whose
subgradient is bounded: Vp(v) € [-1,1] for every v € [0,1]. Then for any distribu-
tion I of (v1,v2) € [0,1],

D,(vi,v9) < su E D, .(v1,v9).
o1 5 o (v1,02) i SR e (v1,v2)
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A.7 Relationship to ECE

We prove Theorem 4.3, which demonstrates the quadratic relationship between the
CDL and the ECE. The first and last inequalities in (4.3) follow immediately from
Jensen’s inequality. The second inequality can be proved using the decision task
T2 from Section 4.2. Specifically, the payoff function of 75 has its range bounded
in [0, 1], so by the definition of CDL and Equation (4.6),

CDL(p, D) > CFDLy, (p, D) = ECEy(p, D)?.

Now we prove the third inequality in (4.3). By Lemma 4.7 and Theorem A.1, for
any decision task T with [0, 1] bounded payoffs,

CFDL7(p, D) = E[Dy(p(x)[[p(x))] < sup E[Dg, . (p(x)[|p(x))]
v*€[0,1]

< 2E[p(x) - p(x)| = ECE(p, D). (by (A.8))
This proves CDL(p, D) < 2ECE(p, D), as desired.

A.8 Tight examples between CDL and ECE

We prove the correctness of the two examples (p1, D1), (p2, D2) we mentioned after
Theorem 4.3 that shows the tightness of Theorem 4.3.

In the first example, we have pi(z) = 1/2 and p1(x) = 1/2 + ¢ for any z, so
it is clear that ECEx(p1,D1) = e. To prove CDL(py1, D1) > 2¢, consider the task
Ti = (A4, u) with two actions: A = {0,1}. The payoff function v is defined such
that u(a,y) =1 if a = y, and u(a,y) = 0 otherwise. The best-response function is
or(v) =0if v <1/2, and or(v) = 1 otherwise. We have

Elu(or, (p1(x)),¥)] = E[u(0,y)] = Prly = 0] =

Efu(or (51 (x)), )] = Efu(l,y)] = Prly = 1] = 5 +=.

Taking the difference between the two expected payoffs, we get CDL(py,D;) >
CF])LT1 (ph Dl) = 2¢.

In the second example, we have pa(z) = z and pa(z) = = — ¢, so it is clear that
ECE(p2, D3) = e. Now we prove

i =2 +0(®). (A.9)

CDL(ps, Ds) < 16

Consider any decision task T = (A,u) with a [0, 1]-bounded payoff function u :
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A — [0,1]. By Lemma 4.7 and Theorem A.1,
CFDL7(p2, D2) = E[Dy (P2(x)llp2(x))]
= E[D,(x— <[

< sup E[D,,.(x—e¢|x)]
v*ef0,1] P2

sup Pr [v* —(x— 5)‘@* € (x—¢,x] (by (A.8))
v+ €[0,1] D2

1
sup / (v* = (x —e)I(v* € (x — &, z])dz
v*€f0,1] Jo

v +e
< sup / (" —(x —¢))dx
v*€[0,1] Jv*

=2¢% (A.10)

Since this upper bound on the CFDL holds for any decision task 7 with a [0, 1]-
bounded payoff function, it implies (A.9), as desired.

B. THE INHERENT UNCERTAINTY IN DISTANCE TO CALIBRATION

Assume that all we know about the predictor p and distribution D* = (x,y™*) is the
distribution J* = (p(x),y*). Does this specify dCE(p, D*) completely? Or is there
still some uncertainty on how far the closest calibrated predictor is, depending on
the space X7

We present a simple example showing that there is indeed some uncertainty. Take
€ to be any value in (0,1/2), and let § = ¢/(1 — 2¢). The distribution J* is easy to
describe: p(x) takes the values 1/2 +§ and 1/2 — ¢ each with probability 1/2, and
conditioned on each value of p(x), y* is uniformly distributed in {0, 1}.

Note that any such p is not perfectly calibrated. But it is § far from the constant
1/2 predictor, which is perfectly calibrated. It is easy to construct a space where
this is indeed the closest calibrated predictor, so that dCE(p, D*) = ¢.

What is perhaps less obvious is there exist spaces and predictors realizing J*
where the true distance to calibration is much smaller. We describe one such
construction. Let X = {00,01,10,11}. Cosndier the distribution D* on pairs
(x,y*) € X x {0,1}, and predictors p;,ps : X — [0, 1] given below:

H x ‘ Prp:[x = z] ‘ Ep«[y*|x = z] ‘ p1(x) ‘ pa(x) H
00 z—€ 3—0 z—0] 39
01 € 1 2—0| 2
10 € 0 26| 2
11 Lap: 3446 S+6 [ 5+6

The predictor p; is not perfectly calibrated, indeed we have chosen § such that
the joint distribution of (p;(x),y*) is exactly J*: conditioned on either prediction
value in {1/2 46}, the bit y* is uniformly random. In contrast, the predictor ps is
easily seen to be calibrated.
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Observe that p; and py agree on 00 and 11. They disagree by § on 01 and
10, which each have e probability under D*, so d(p1,p2) = 2¢6 = O(e?). This
establishes the difficulty of pinning down the true distance to calibration within a
quadratic factor.

C. RELATING UPPER AND LOWER DISTANCES TO CALIBRATION

In this section, we prove Theorem 6.9 showing that the upper and lower distance
to calibration can be at most quadratically far apart. This shows that the simple
example in Appendix B is nearly tight. We follow the proof strategy of [Blasiok
et al. 2023a] using the notion of interval calibration error.

C.1 Interval Calibration Error

Definition C.1 Interval Calibration Error [Blasiok et al. 2023a/. A interval par-
tition B is a partition of the interval [0, 1] into disjoint intervals Iy,..., I. We let
the width of the partition width(B) be the length of longest interval. Given a
predictor p, we define its calibration error and interval calibration error for B re-
spectively as

CEp(p,D*) = > |El(y" - p(x)1(p(x) € I,)]]
JE[K]
intCEg(p, D*) = CEg(p, J*) + width(B).

The interval calibration error minimizes over all interval partitions B:

intCE(p, D*) = mBin intCEg(p, D*).

The definition of intCEg involves two terms that represent a tradeoff: the cal-
ibration error term, and the width term that penalizes partitions which use large
width intervals. Intuitively, as the intervals grow larger it is easier to reduce calibra-
tion error, since we are allowed to cancel out the point-wise errors E[y*|p(x)] — p(x)
over larger intervals; but the width penalty also grows larger. At one extreme, we
can think of the width 0 case as corresponding to the ECE. At the other extreme,
by taking the single interval [0, 1], we pay E[y* — p(x)] which is 0 if the expectations
of y* and p(x) are equal; a very weak calibration guarantee. But now the width
penalty is 1.

Formal justification for the definition comes from the following observation. The
canonical predictor ¢g for an interval partition B and a distribution D* is the
predictor where for all € I;, the ¢p predicts v; = E[y*|p(x) € I;|. It is easy to
see that qp is perfectly calibrated for D*.

LEMMA C.2. The canonical predictor qg for B, D* satisfies d(p, ¢g) < intCEg(p, D*).
This leads to the following upper bound:
THEOREM C.3. [Blasiok et al. 2023a] We have dCE(p, D*) < intCE(p, D*).

To prove Theorem C.3 we observe that the canonical predictor ¢ can be viewed
as a post-processing of the predictor p, since we can write ¢g(z) = k(p(z)) where
k(t) = v, for t € I;. Thus by Lemma C.2,

dCE(p, D*) < d(p,qp) < intCEg(p, D*).
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Minimizing over all B completes the proof.
The reader might wonder, why define yet another calibration measure? The
answer is two-fold:

—Interval calibration error gives a simple yet powerful upper bound on the upper
distance to calibration. In the next subsection, this allows us to relate the up-
per and lower distance to calibration, showing that they are never more than
quadratically far apart. This is formally proved in Theorem 6.9, showing the gap
example in Corollary 6.8 is the worst possible (up to constants).

—It presents a rigorous alternative to heuristic measures like bucketed ECE: reg-
ularize the calibration error by adding the max bucket width. This allows for
meaningful comparison of calibration scores obtained using different number or
other choice of buckets, rather than leaving the number of buckets as a hyperpa-
rameter.

C.2 Proof of Theorem 6.9

Let us pick X, D*,p to be the space, distribution and predictor respectively that
achieve the lower distance to calibration for J*. So there exists a perfectly calibrated
predictor ¢ : X — [0, 1] such that d(p,q) = dCE(p, D*) = §. We wish to infer the
existence of a bucketing B so that intCEg(p, D*) is small. By Theorem C.3, this
will imply that the upper distance is bounded. Corollary 6.8 tells us that we cannot
hope for an upper bound better than /& /2. Tt turns out that this is not far from
the best possible (see Section A.2 for proof):

LeEMMA C.4. There exists a bucketing B such that intCE g (p, D*) < 4V/4.
Combining this lemma with Corollary 6.8, we have completed the proof:

dCE(p, D*) < intCE(p, D*) < intCEp(p, D*) < 4V = 4,/dCE(p, D*).
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The problem of delegated choice has been of long interest in economics and recently on computer
science. We overview a list of papers on delegated choice problem, from classic works to recent
papers with algorithmic perspectives.

Categories and Subject Descriptors: B.6.3 [Theory of computing]: Algorithmic mechanism
design

General Terms: Mechanism Design,

Additional Key Words and Phrases: Delegation

1. INTRODUCTION

The delegated choice problem is a fundamental model of principal-agent interac-
tion with numerous real-world applications, capturing the tension when a decision
maker (principal) delegates the role of decision making to an informed but self-
interested agent. The model has its roots in classic economic theory introduced
by [Holmstréom 1978], and has since evolved into a rich interdisciplinary area span-
ning economics, computer science, and operations research. It considers a scenario
where the principal cannot commit to a contingent monetary transfer, and thus
the principal needs to commit to a mechanism that specifies the characteristics of
the agent’s proposals that she is willing to accept. Such a model is particularly
motivated by practical scenarios such as public regulators who can only accept or
reject proposals from private sector, or investors relying on recommendations from
financial advisors who are not contractually incentivized by the investor’s returns.

In its canonical form, the principal must select an action from a discrete (or
often continuous) set €2, where each action ¢ € 2 has a pair of random utility val-
ues (X;,Y;): one for the principal and one for the agent. Only the agent observes
these values and proposes an action for selection, while the principal only knows
the distribution from which these random values are drawn, introducing an infor-
mation asymmetry. Once the agent observes the realizations, he sends a signal
(e.g., proposing an action) to the principal, who then makes the final decision. The
agent seeks to maximize his own utility rather than the principal’s, resulting in
moral hazard. To mitigate this, the principal commits to a screening mechanism
that selectively accepts the proposed action based on its values. For instance, an

Authors’ addresses: hajiagha@umd.edu, suhoshin@umd.edu
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eligible set F; C R? can be announced to the agent so that the principal will only
accept the proposed action 7 if (X;,Y;) € E;.

Recent work has shifted from classical results on existence and structure of opti-
mal mechanisms to more algorithmic and computational perspectives. This reading
list collects key papers in this growing literature, highlighting recent developments
in various aspects of the delegated choice problem, including its connections to the
prophet inequality [Krengel and Sucheston 1977], Pandora’s box [Weitzman 1978],
and broader stochastic optimization problems.

Our goal is to introduce the core problem setup, present both classic and recent
contributions, and illustrate how this line of work connects to various research areas
in the EC community. As such, this article is neither exhaustive nor comprehensive;
we hope it will serve as a useful starting point for readers to grasp the central ideas
and emerging directions in delegated choice problem.

(1) Bengt Rober Holmstrém. On incentives and control in organizations, Ph.D.
dissertation thesis, 1978 & Bengt Rober Holmstrém, On the theory of delega-
tion, Bayesian Models in Economic Theory, 1984.

Seminal work by [Holmstrom 1978; 1984] provides the foundational frame-
work for delegation as an optimal screening mechanism. Instead of the discrete
choice model described above, the principal delegates an optimization problem
by choosing a screening set A’ C A from which the agent selects an action
a € A’ that yields payoffs v(a,f) and u(a,8) to the principal and agent, re-
spectively, where 6 is a realized state observed only by the agent. Holmstrom
characterizes conditions under which a single interval is optimal, and shows
that the discretion given to the agent increases as his preferences align more
closely with the principal’s.

(2) Mark Armstrong, John Vickers. A model of delegated project choice, Econo-
metrica, 2010.

[Armstrong and Vickers 2010] provides the first discrete choice model, which
serves as a foundation for subsequent works. There are n available actions,®
each with a type (u,v) drawn i.i.d. from a distribution, where the agent re-
ceives payoff v and the principal receives v + au for some o > 0. Only the
proposed action’s type is verifiable, so the principal’s goal is to design a screen-
ing mechanism over admissible types (u,v), and the authors identify optimal
mechanisms under specific payoff assumptions.

(3) Jon Kleinberg, Robert Kleinberg. Delegated search approximates efficient
search, Proceedings of the 2018 ACM Conference on Economics and Computa-
tion (EC), 2018.

[Kleinberg and Kleinberg 2018] studies the approximate efficiency of the opti-
mal delegation mechanism with respect to the first-best benchmark, where the
principal observes the utilities of all actions in hindsight and can choose what

n fact, they consider a setting where n is also drawn from a known distribution.
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she wants, building on the model of [Armstrong and Vickers 2010].2 It con-
siders precisely the problem setup described in the introduction, and uncovers
a surprising connection to the classical prophet inequality [Krengel and Suche-
ston 1977]. Specifically, they prove an equivalence between the delegated choice
problem and a version of prophet inequality with oblivious stopping rules. This
leads to several delegation gap bounds, including a 1/2-approximation with a
threshold mechanism in the general case and a (1 — 1/e)-approximation in the
i.i.d. case.

Kiarash Banihashem, Mohammad T. Hajiaghayi, Piotr Krysta, Suho Shin. Del-
egated choice with combinatorial constraints, Proceedings of the 2025 ACM
Conference on Economics and Computation (EC), 2025.

[Banihashem et al. 2025] considers a natural follow-up to [Kleinberg and Klein-
berg 2018], asking to what extent the connection between delegated choice and
prophet inequalities carries over. They study a multi-choice setting with a uni-
verse U of n actions and a family of feasible sets Z C 2, where the principal
aims to select a set I € Z to maximize X; = ) ,.; X;. Notably, they pro-
vide the first provable separation between the two problems by showing that
delegated choice under downward-closed constraints allows constant-factor ap-
proximation, whereas prophet inequalities does not [Rubinstein 2016]; they
further show that the correspondence between the two problems holds if and
only if the constraint is a matroid.

Curtis Bechtel, Shaddin Dughmi. Delegated stochastic probing, 12th Innova-
tions in Theoretical Computer Science (ITCS), 2021.

[Bechtel and Dughmi 2021] proposes a delegated stochastic probing problem
where the agent probes actions under an outer constraint Z,,; and proposes
a feasible set under an inner constraint Z;,. Without an outer constraint or
probing cost, their model coincides with [Banihashem et al. 2025], and they
show that a greedy prophet inequality strategy against an almighty adversary,
who observes every random bit of the algorithms and environments and de-
cides a worst-case instance, can be implemented in this setting. This yields
several immediate corollaries on matroid, matching, and knapsack constraints
via greedy online contention resolution schemes [Feldman et al. 2016].3

Ali Kohdabakhsh, Emmanouil Pountourakis, Samuel Taggart. Simple dele-
gated choice, Proceedings of the 2024 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2024.

The assumption that the proposed action’s utilities are easily verifiable is ad-
missible as misreporting could be verifiable by implementing the action or it

2They also consider a search problem where the agent undergoes a costly search process to seek
solutions, with connection to Pandora’s box problem [Weitzman 1978].

3We note here that this does not contradict the necessity of matroid results shown in [Banihashem
et al. 2025], since [Bechtel and Dughmi 2021] guarantees only that the principal’s utility exceeds
the prophet’s, not an exact equivalence between the agent’s choice and the prophet inequality
algorithm’s decision as shown by [Banihashem et al. 2025].
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may incur a reputation effect. On the other hand, this could often be imprac-
tical when the delegation happens as a one-off interaction or if it entails an
expensive cost of verification such as the delegated decision of a governmen-
tal policy. [Khodabakhsh et al. 2024] considers a mechanism that does not
depend on the utilities of the proposed values, but the principal completely
rules actions in or out based on the distributional knowledge. They show that
competing with the first-best benchmark is hopeless, and that the problem of
computing the optimal mechanism is NP-hard, which is complemented by their
1/3 approximate deterministic mechanism.

Mohammad T. Hajiaghayi, Piotr Krysta, Mohammad Mahdavi, Suho Shin.
Delegation with costly inspection, Proceedings of the 2025 ACM Conference on
Economics and Computation (EC), 2025.

[Hajiaghayi et al. 2025] directly addresses the verifiability assumption by al-
lowing the principal to inspect the proposed action, and possibly others, at
deterministic costs ¢;, to verify utilities. In their extension of [Kleinberg and
Kleinberg 2018], the agent may misreport if inspection is unlikely, and del-
egation itself incurs a fixed cost cge;. This model generalizes the Pandora’s
box problem with nonobligatory inspection [Doval 2018], inheriting its NP-
hardness [Fu et al. 2023; Beyhaghi and Cai 2023], and they show that while
the first-best benchmark cannot be approximated, constant-factor approximate
mechanisms exist in both costless and costly delegation settings when the cost
of delegation is high or low.

Suho Shin, Keivan Rezaei, Mohammad T. Hajiaghayi. Delegating to multiple
agents, Proceedings of the 2023 ACM Conference on Economics and Computa-
tion (EC), 2023.

While the preceding works focus on Bayesian mechanisms, a few have explored
prior-independent mechanisms in relaxed settings.* [Shin et al. 2023] studies a
multi-agent delegated choice problem where each agent proposes an action, but
only the selected agent receives nonzero utility, introducing competition that
benefits the principal. They consider both Bayesian and prior-independent
mechanisms and show that a constant-factor prior-independent mechanism ex-
ists in the complete information setting with symmetric agents, whereas the
benefit of having multiple agents depends heavily on the agents’ information
and symmetry.

Curtis Bechtel, Shaddin Dughmi. Efficient multi-agent delegated search, Pro-

ceedings of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), 2025.

[Bechtel and Dughmi 2025] improves the results for Bayesian mechanisms un-
der the incomplete information setting introduced by [Shin et al. 2023]. They
achieve an approximation factor tending to 1 as the number of agents increases,

4In the standard setup with a single agent, one can easily see that no prior-independent mechanism
can approximate the first-best benchmark.
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when the agents have symmetric sets of actions that are not necessarily i.i.d.
This strengthens the approximation factor and relaxes the constraints intro-
duced by [Shin et al. 2023].

(10) Mohammad T. Hajiaghayi, Mohammad Mahdavi, Keivan Rezaei, Suho Shin.
Regret analysis of repeated delegated choice, Proceedings of the Thirty-Eighth
AAAI Conference on Artificial Intelligence (AAAI), 2024.

Distributional knowledge, in practice, is usually constructed from historical
data. [Hajiaghayi et al. 2024] considers a variant with prior-independent mech-
anisms where the principal can repeatedly interact with the agent to construct
estimates of the distributions. They frame their setup as a stochastic multi-
armed bandit problem, and propose no-regret learning algorithms for myopic
and farsighted agents under the Lipschitzness assumption of the utilities, using
tools from bandits with perturbed outputs.
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