
ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005, Pages 1-10.

A Comparative Illustration of AI Planning-based
Web Services Composition
SEOG-CHAN OH, DONGWON LEE, AND SOUNDAR R. T. KUMARA
Penn State University

__

As the number of available web services proliferates, finding right web services to fulfill a given goal becomes
an important task. In particular, a problem of combining multiple web services to satisfy a single task, known as
web services composition problem, has received much attention recently, and various solutions have been
proposed. Among many proposed solutions, however, it is not clear to use which one in what scenarios. In this
paper, to this end, we present: (1) a taxonomy and decision guideline of available solution spaces; (2) an
overview of syntactic and semantic matching approaches, and (3) a comparative illustration of three
representative solutions from the perspective of e-service workflows.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and
Search – Plan execution, formation, and generation; G.1.6 [Numerical Analysis]: Optimization - Integer
Programming
General Terms: Algorithms, Documentation
Additional Key Words and Phrases: Web services composition, Graphplan, SATPlan, Integer Programming
__

1. INTRODUCTION

Web Services are often considered as one of the most important and vital building blocks

for the Semantic Web [Berners-lee et al. 2001]. As such, the industrial support of web

services has grown drastically in recent years. For example, it is expected that by 2007,

72% of all application development software will support web services and 45% of all

types of software will be web services enabled [Cantera 2004].

Typically, a client program first finds a web services server that can satisfy certain

needs from a yellow page (UDDI), and obtain a detailed specification (WSDL) about the

service. Then, using the acquired API, the client sends a request to the server via a

standard message protocol (SOAP), and in return receives a response from the server.

Unlike conventional programming interface, web services are self-explanatory. That is,

by interpreting XML tags, applications can interpret the operations and data much easier

than otherwise.

__
Author’s address: Seog-Chan Oh (sxo160@psu.edu), Industrial and Manufacturing Engineering department,
Penn State University, USA; Dongwon Lee(dongwon@psu.edu), School of IST, Penn State University, USA;
Soundar R. T. Kumara (skumara@psu.edu), Industrial and Manufacturing Engineering department, Penn State
University, USA.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2005 ACM 1073-0516/01/0300-0034 $5.00

mailto:sxo160@psu.edu
mailto:dongwon@psu.edu
mailto:skumara@psu.edu

2 · Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Kumara

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

The problem that we concern is the first step of this scenario – given a request r,

finding right web services for r. In particular, we are interested in the case where one has

to combine multiple web services to satisfy r since no single one can. Consider the

following motivating example.

Example. Suppose there are two web services available in UDDI as shown in Table 1:

(1) findRestaurant returns a name, phone number, and address of the closest

restaurant provided a zip code and food preference; and (2) findDirection returns

driving direction and a map image provided a start and destination addresses. “Sylvie”

visits “State College, PA” on a business trip and stays in the “Atherton” hotel at “100

Atherton Ave, 16801, PA.” Now, she wants to find a Thai restaurant near the hotel along

with a driving direction. Let us call this request as r .

Note that neither of two web services can satisfy r alone. However,

findRestaurant can find a Thai restaurant near the hotel, but cannot provide a

driving direction. On the other hand, the web service findDirection can give a

direction from one location to another, but cannot locate a restaurant. Therefore, one has

to combine both web services to jointly satisfy r as follows: (1) invoke

findRestaurant(“16801”, “Thai”) to get the address of the closest restaurant, say

“410 S. Allen St. 16802, PA”; and (2) invoke the web service findDirection(“100

Atherton Ave, 16801, PA”, “410 S. Allen St. 16802, PA”) to get the driving direction. �

Table 1. Example web services
<message name=’findRestaurant_Request’>
<part name=’zip’ type=’xs:string’>
<part name=’foodPref’ type=’xs:string’>
</message>
<message
name=’findRestaurant_Response’>
<part name=’name’ type=’xs:string’>
<part name=’phone’ type=’xs:string’>
<part name=’addr’ type=’xs:string’>
</message>

 <message name=’findDirection_Request’>
<part name=’fromAddr’ type=’xs:string’>
<part name=’toAddr’ type=’xs:string’>
</message>
<message name=’findDirection_Response’>
<part name=’map’ type=’xs:string’>
<part name=’direction’
type=’xs:string’>
</message>

(a) findRestaurant (b) findDirection

Formally, a web service, w , has typically two sets of parameters: ,...},{ 21 IIwin = for

SOAP request (as input) and ,...},{ 21 OOwout = for SOAP response (as output). When w

is invoked with all input parameters, , it returns the output parameters, . We

assume that in order to invoke , all input parameters in must be provided (i.e.,

inw outw

w inw

A Comparative Illustration of AI Planning-based Web Services Composition · 3

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

inw are mandatory). In general, given and , when can be invoked at the current

information state and then, can “fully” match .

1w 2w 1w

21
inout ww ⊇ 1w 2w

When one has a request r that has initial input parameters and desired output

parameters , one needs to find a web service w that can fulfill such that

(1) , and (2) . Finding a web service that can fulfill r alone is referred

to as Web Service Discovery (WSD) problem. When it is impossible for one web service

to fully satisfy r, one the other hand, one has to compose multiple web services,

 in sequential or parallel way such that (1) for all ,

 can be grounded when is required at a particular stage in composition, and

(2) . This problem is often called as Web Service Composition

(WSC) problem.

inr

outr r

inin wr ⊇ outout wr ⊆

},,,{ 21 nwww K },,,{ 21 ni wwww K∈

i
inw i

outw

out
n
outoutin rwwr ⊇)(1 UKUU

Since WSD problem can be trivially solved using a simple Hashtable-like data

structure, in this paper, we focus on the WSC problem – how to efficiently and accurately

compose web services to satisfy requests which can not be solved by WSD.

2. CLASSIFICIATION OF THE WSC PROBLEM

We can classify the WSC problem using the following three facets:

• Manual vs. Automatic Workflow Composition: In building workflows by means of

web services, one can do either (1) manual composition in cooperation with domain

experts; or (2) automatic composition by software programs. In the manual approach,

human users who know the domain well (e.g., domain ontology) select proper web

services and weave them into a cohesive workflow. Although users may rely on some

GUI-based software to facilitate the composition, in essence, it is a labor-intensive and

error-prone task, and thus is not appropriate for large-scale WSC problem. On the

contrary, in the automatic composition approach, one assume that software programs

know if two web services can be connected or not (i.e., via syntactic matching of web

services parameters or even via semantic matching).

• Simple vs. Complex Operator: The simplest WSC involves only a sequential AND

composition – “retrieve data from a web service a1, AND then from b5, AND then c9,

AND so on.” The more complex WSC, however, can use other operators (e.g., OR,

4 · Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Kumara

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

XOR, NOT) or constraints (e.g., request r prefers web services at Asia to ones at

Europe) in both sequential and parallel modes.

• Small vs. Large Scale: The general WSC problem can be reduced to the satisfiability

problem [Vossen et al. 1999] – a well-known NP-complete problem. As such, since it

is unlikely to find a polynomial algorithm for the WSC problem, exhaustive search

algorithms may work for only small-scale WSC problem. For a large-scale problem,

therefore, approximate algorithms that find sub-optimal solutions are more desirable.

CompositionComposition

ScaleScale

OperatorOperator OperatorOperator

Workflow
methods

•Kepler
•Proteus
•METEOR-S

:Facet

:Methods

•A* variants
algorithms

Satisfiability algorithm
•SATPlan + WalkSAT

•Tabu search,
•Genetic algorithm etc.

Local search

•Integer linear programming

•Graphplan, Partial order
planning
•Theorem proving

(Pre-defined
workflow required)

(Syntactic or Semantic Web
enabled)

Manual Automatic

SmallLarge

n = # of web
services

simple complex complex

AI planning
methods

Heuristic Search
algorithm

•Rule based planning

simple

Fig. 1. A decision tree of AI solutions for the WSC problem.

Fig. 1 illustrates a decision tree to help select the right solution using the aforementioned

three facets. The manual composition approach can rely on software programs and

domain experts to bind manually-generated workflows to the corresponding concrete

resources. Therefore, this approach is not appropriate for scenarios where one needs to

compose tangible e-services workflow from thousands of available web services.

METEOR-S [Sivashanmugam et al. 2003], Proteus [Ghandeharizadeh et al. 2003], and

Kepler [Altintas et al. 2004] are examples of this approach.

When the scale or complexity of the WSC problem increases, automatic composition gets

more desirable. The automatic composition approach can be complementary to the

manual approach such that a few feasible workflows generated from the automatic

approach are in turn presented to domain experts who may choose one of them, and

refine it further manually. In particular, when complex operators such as negation is not

required in the composition, heuristic sub-optimal algorithms such as A* work well [Oh

et al. 2005]. On the other hands, when operators are complex and some specific

A Comparative Illustration of AI Planning-based Web Services Composition · 5

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

constraint rules must be checked, rule-based expert systems can work well. However,

considering the fast growth of web services, building a full knowledge base by converting

all web services into axioms, will be expensive. SWORD [Ponnekanti and Fox 2002] is

an example of this approach.

However, for more general WSC problem, often, AI planning based solutions such as

STRIPS or Graphplan, or Integer Linear Programming methods work better. For instance,

the STRIPS [Fikes and Nilsson 1971] is the first major AI planning system to describe

actions in terms of their preconditions and effects. The Graphplan [Blum and Furst 1995]

is a general-purpose planner for STRIPS-style domains using graph algorithms. Given a

problem statement, Graphplan uses a backward search to extract a plan and allows for

partial ordering among actions. As the satisfiability approach for the planning problems,

the SATPlan algorithm [Kautz and Selman 1992] is a greedy local search method that

translates a planning problem into propositional axioms and finds a model that

corresponds to a valid plan. An excellent survey of modern planning algorithms and their

application to the WSC problems can be found in [Weld 1999; Rao and Su 2004].

3. OVERVIEW OF MATHCING APPROCHAES

The WSC problem needs to integrate information from heterogeneous sources. Since

individual web services are created in isolation, their vocabularies are often with

problems having abbreviations, different formats, or typo-graphical errors. Furthermore,

two terms with different spellings may mean the same semantic meaning, and thus are

inter-changeable (e.g., “price” and “fee”). Conversely, two terms with the same spelling

may have different meanings (e.g., “title” may mean either “book title” or “job title”).

In response to these challenges, researchers have developed diverse matching

schemes. Consider that x and are data objects (e.g., web service parameters; individual

record field) with a vector of attributes: , and

y

),,,(21 kxxxx K=),,,(21 kyyyy K= , where

is the dimension. We can quantify the “similarity” between k x and by a distance

function, with properties: (1) , where equality holds if and only if

y

),(yxd 0),(≥yxd

x = , (2) y),(),(xydyxd = : symmetry (3) d),(), z(),(yzdxdyx +≤ : triangle

inequality.

By using different distance function, , one can employ different matching

approaches. In general, matching approaches may fall into three categories: (1)

),(yxd

6 · Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Kumara

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

Approach-1: exact match using syntactic equivalence; (2) Approach-2: approximate

match using distance functions; and (3) Approach-3: semantic match using ontologies

(e.g., RDF and OWL).

In Approach-1, two objects x and y are deemed to be a match if and only if x = .

However, with this approach, two objects with slightly different representations (e.g.,

“William Jefferson Clinton” and “bill Clinton”) cannot be matched. For this reason, in

Approach-2, if two objects are similar enough according to some distance function

(i.e., is above some threshold), then two objects are deemed to be a match.

Popular distance functions include TF-IDF, Jaccard, SoftTF-IDF, Jaro, or Levenstein

distance [Bilenko et al. 2003]. Although approach-2 is much more flexible than

approach-1, it is not still sufficient to identify that “price” and “fee” are inter-changeable.

In response, researchers have created the vision of Semantic Web where data has

structure and ontologies describe the semantics of the data. Based on Semantic Web

foundation, approach-3 can address the ontology-matching problem to find semantic

mapping between two ontologies, specified by languages such as OIL, DAML+OIL,

OWL, SHOE, and RDF [Doan et al. 2004].

y

),(yxd

Note that in this paper, the choice of approach to do matching is irrelevant to the

WSC problem. We assume that these matching tasks are pre-processed and pre-selected.

4. COMPARATIVE ILLUSTRATION

In this section, we illustrate three selected automatic-composition algorithms for the

WSC problem, and discuss the benefits and limitations of them. Among many state-of-

the-art proposals, we chose the following three for their impact on other solutions:

Glaphplan, SATPlan and Integer Linear Programming (ILP). For instance, most recent

STRIPS-style planners (e.g., IPP, STAN, and Blackbox) are originated from both

Graphplan and SATPlan. Similarly, ILP with a rich history in operational research

community has shown a good performance for AI planning problems [Vossen et al. 1999].

Moreover, ILP naturally allows incorporating various constraints and objectives into

planning domain.

Before we proceed to illustrate three approaches, we first cast the WSC problem to

the well-studied AI planning problem [Russell and Norvig]. A WSC problem in STRIPS

model is represented by >=<Π outin rrWP ,,, where (1) P is a set of parameters, (2) W is a

A Comparative Illustration of AI Planning-based Web Services Composition · 7

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

set of web services, (3) is the initial state, and (4) is the set of goal

states. In this model, the propositions represent the input and output of the services. The

preconditions of a service are to know values of the input parameters, and the effects are

to know values of the output parameters.

Prin ⊆ Prout ⊆

start

Finish

2w

A

1w

B

A D

E

D
C

E
B

Know_direction
Know_restaruantAddress
Know_hotelAddress
Know_foodPref
Know_zip

E
D
C
B
A

C
findDirection
findRestaurant2w

1w

Fig. 2. STRIPS representation.

Fig. 2 represents Example 1 in STRIPS-style, where Π is: (1) },,,,{ EDCBAP = ; (2)

; (3) },{ 21 WWA = },,{ CBArin = ; (4) . We can use the STRIPS-style notation

for describing the transitions. For instance, findRestaurant action has the

precondition, “Know_zip AND Know_foodPref” and the effect,

“Know_restaurantAddress”. “Know_restaurantAddress” is simply a proposition stating

that the planner knows a value for “restaurantAddress.” In the following, we will

illustrate how three methods attempt to solve Example 1 differently.

}{Erout =

4.1 Graphplan based planning

Fig. 3 (a) and (b) show a planning graph for Example 1. The graph is expanded to two

time steps to find a goal. All axioms in the graph possess situations. For instance,

means doing the findRestaurant action at the first step. The procedure to expand

the graph in Fig. 3(a) to that in Fig. 3(b) is as follows:

2
1W

• Level 0 starts with the initial state of A, B, and C.

• Level 1 consists of the possible actions that have preconditions satisfied from level 0.

Action is possible due to A and B. Note that there are three “maintenance actions”

for A, B, and C, respectively, namely “no-op.”

2
1W

8 · Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Kumara

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

• Level 2 consists of the possible effects from the actions in level 1. A, B, and C are

possible due to maintenance actions. D becomes possible from action . 2
1W

• Level 3 contains all actions from level 1 and additional actions. Action becomes

possible due to the addition of D at level 2.

1
3W

• Level 4 consists of all possible effects from the actions in level 3. E becomes now

possible since action and the goal requirement “Know_direction” are satisfied at

this level. Graphplan then proceeds to search backward to find a valid plan as shown in

Fig 3(b).

1
3W

C

B

A

43210

C

D

B

A

E

D

C

B

A
2
1w

1
3w

2
3w

Level Level Level Level Level

1 time step 2 time step

C

B

A

43210

C

D

B

A

E

D

C

B

A
2
1w

1
3w

Level Level Level Level Level

1 time step 2 time step

(a) Expanding levels (b) Planning graph solution

Fig. 3. Planning using Graphplan.

4.2 SATPlan based reduction

The Planning Graph in Fig. 3(a) can be converted into a set of logical statements as first

proposed by [Kautz and Selman 1992]. First, we can express the initial state at time zero

as: 00000 EDCBA ¬∧¬∧∧∧ . We also describe the goal states at the highest level as .

Then, we can describe the relations between actions and their preconditions as follows:

4E

 , , , , ,

, , , ,

00
2

1 BAW ∧→ 01 AKeepA → 01 BKeepB → 01 CKeepC → 22
2

3 BAW ∧→

23 AKeepA → 23 BKeepB → 22
1

3 DCW ∧→ 23 CKeepC → 23 DKeepD →

Here, for instance, corresponds to the maintenance action (i.e., no-op) in

Graphplan. In addition, we can express the inference relations between each fact and all

actions at the previous level as disjunctions like:

KeepAction

34 KeepAA → , , , , ,

, , ,

34 KeepBB → 34 KeepCC → 3
2

34 KeepDWD ∨→ 1
34 WE →

12 KeepAA → 12 KeepBB → 12 KeepCC → 2
12 WD →

A Comparative Illustration of AI Planning-based Web Services Composition · 9

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

Finally, these four logical statements are combined into one conjunction, namely an

instance of the satisfiability problem (SAT), and solved by any off-the-shelf tools (e.g.,

complete methods including Truth Table, Resolution or incomplete methods including

WalkSat). The final solution of the problem is:

∧∧∧∧∧∧∧ 221
2

1000 DCKeepCWCBA 4
1

3 EW ∧

4.3 Integer Linear Programming (ILP) formulation

The Planning Graph in Fig. 3(a) can also be formulated as a set of constrains. Suppose

that levels 0 and 1 are period 1, levels 2 and 3 are period 2, and level 4 is period 3. Then,

• Variables:
if effect e is true in period i

⎩
⎨
⎧

=
0
1

,ieX
Otherwise
if action a is carried out in period i

0
1

,
⎩
⎨
⎧

=iaY
Otherwise

ieY , = The maintenance action for effect e during period i.

• Initial constraints: 11,1,1, === CBA XXX , 01,1, == ED XX

• Goal constraint: 13, =EX

• Constraints for action preconditions:

1,1,2 AW XY ≤ , 1,1,2 BW XY ≤ , 1,1, AA XY ≤ , ,1,1, BB XY ≤ 1,1, CC XY ≤ , 2,2,2 AW XY ≤ , ,

,

2,2,2 BW XY ≤

2,2, AA XY ≤ 2,2, BB XY ≤ , , , 2,2,1 CW XY ≤ 2,2,1 DW XY ≤ 2,2, CC XY ≤ , 2,2, DD XY ≤

• Backward constraints:

2,3, AA YX ≤ , 2,3, BB YX ≤ , ,2,3, CC YX ≤ 2,2,3, 2 DWD YYX +≤ ,
2,3, 1WE YX ≤ , 1,2, AA YX ≤ , ,

,

1,2, BB YX ≤

1,2, CC YX ≤ 1,2, 2WD YX ≤

• Objective function:

 MIN ∑∑ ∈∈
+

set emaintenanc),(,setaction),(, ie ieja ja YY

The objective function, MIN, is to minimize the number of actions in this

programming. In order to get an optimal solution for the ILP model above, one can use

any integer linear programming solver (e.g., Excel Solver®, LINDO®, and GAMS® etc.).

For instance, an optimal solution is 3 with (11,2 =WY , 12,1 =WY , 11, =CY), that is identical to

the solutions obtained in Graphplan and SATPlan formulations

10 · Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Kumara

ACM SIGecom Exchanges, Vol. 5, No. 5, December 2005.

4.4 Discussion

Both Graphplan and ILP are approaches suitable for the planning problem with complex

operators in a small-scale. On the other hand, SATPlan can be used to find sub-optimal

compositions for a large-scale problem with complex operators. Different from

Graphplan and SATPlan that address only the shortest time step to reach a goal, in ILP

formulation, other QoS (e.g., response time, service cost, or availability of sources) based

objective functions can be optimized.

5. CONCLUSIONS

We presented that web services based e-service workflow problem can be formulated as

the planning problem of AI and thus can be solved by using the off-the-shelf planning

tools. To illustrate their pros and cons, we first introduced three facets that affect the

complexity of the problem, and highlighted three representative algorithms within the

planning framework.

REFERENCES
ALTINTAS, I. (et al.) 2004. A web service composition and deployment framework for scientific workflows. In

Proceedings of Int’l Conf. On Web Services (ICWS).
BERNERS-LEE, T., HENDLER, J., AND LASSILA. O. 2001. The Semantic Web. Scientific American.
BILENKO, M., COHEN, W. W., FIENBERG, S., MOONEY R. J., AND RAVIKUMAR P. 2003. Adaptive

name matching in information integration. IEEE Intelligent Systems, 18(5).
BLUM A., AND FURST, M.L. 1995. Fast planning through planning graph analysis. In Proceedings of IJCAI.
BONET, B., AND GEFFNER, H. 2001. Planning as heuristic search. Artificial Intelligence. 129(1-2).
CANTERA, M. 2004. IT professional services forecast and trends for web services. ITES-WW-MT-0116,

Gartner Inc.
DOAN, A., MADHAVAN, J., DOMINGOS, P., AND HALEVY, A. 2004. Handbook on ontologies in

information systems, STAAB, S. AND STUDER, R. (eds.), Springer-Velag.
FIKES, R.E., AND NILSSON, N. 1971. STRIPS: A new approach to the application of theorem proving to

problem solving. Artificial Intelligence, 5(2).
GHANDEHARIZADEH, S. (et al.) 2003. Proteus: a system for dynamically composing and intelligently

executing web services. In Proceedings of Int’l Conf. On Web Services (ICWS).
KAUTZ, H., AND SELMAN, B. 1992. Planning as satisfiability. In Proceedings of ECAI.
OH, S., ON, B., LARSON, E. J. AND LEE, D. 2005. BF*: Web services discovery and composition as graph

search problem. In Proceedings of IEEE EEE, Hong Kong, China.
PONNEKANTI, S.R., AND FOX, A. 2002. SWORD: A developer toolkit for web service composition. In

Proceedings of WWW, Honolulu, HI.
RAO, J., AND SU, X. 2004. A survey of automated web service composition methods, In Proceedings of

SWSWPC.
RUSSELL, S. J., AND NORVIG, P. 2002. Artificial Intelligence: A modern approach. Prentice-Hall.
SIVASHANMUGAM, K., VERMA, K., SHETH, A., AND MILLER, J. 2003. Adding semantics to web

services standards. In Proceedings of Int’l Conf. On Web Services (ICWS).
VOSSEN, T., BALL, M., LOTEM, A., AND NAU, D. 1999. On the use of integer programming models in AI

planning. In Proceedings of AAAI.
WELD, D.S. 1999. Recent advances in AI planning. AI Magazine, 20(2).

