
The Complexity of Forecast Testing

LANCE FORTNOW

and

RAKESH V. VOHRA

Northwestern University

Consider a weather forecaster predicting the probability of rain for the next day. We consider

tests that given a finite sequence of forecast predictions and outcomes will either pass or fail the

forecaster. It is known that any test which passes a forecaster who knows the distribution of

nature can also be probabilistically passed by a forecaster with no knowledge of future events.

This note summarizes and examines the computational complexity of such forecasters.
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1. INTRODUCTION

Suppose one is asked to forecast the probability of rain on successive days. In
the absence of any knowledge about the distribution that governs the change in
weather, how should one measure the accuracy of the forecast? Clearly, the question
is relevant not just for weather forecasting, but to any kind of probability forecast.
For example, the probability forecasts one obtains from prediction markets.

A popular and well studied criterion for judging the effectiveness of a probability
forecast is called calibration. Dawid (1982) offers the following intuitive definition
of calibration:

Suppose that, in a long (conceptually infinite) sequence of weather fore-
casts, we look at all those days for which the forecast probability of
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precipitation was, say, close to some given value ω and (assuming these
form an infinite sequence) determine the long run proportion p of such
days on which the forecast event (rain) in fact occurred. The plot of p

against ω is termed the forecaster’s empirical calibration curve. If the
curve is the diagonal p = ω, the forecaster may be termed (empirically)
well calibrated.

If a forecaster knows the actual probability distribution that governs the weather,
then by reporting the correct conditional probability of rain each day, she will be
well calibrated. On the other hand, as described in Foster and Vohra (1993), it is
possible to be well calibrated without any knowledge of the weather at all. Specif-
ically, they describe a randomized forecasting algorithm that with no knowledge
whatsoever of the distribution that governs the weather, will with high probability
generate forecasts that are well calibrated. Thus, a forecaster with no meteorologi-
cal knowledge would be indistinguishable from one who knew the distribution that
governs the change in weather.1 In one sense this result is unsurprising because
calibration is a weak criterion. Different forecasts can be well calibrated with re-
spect to the same set of data. For example, suppose it rains on alternate days, i.e.,
wet, dry, wet, dry, etc. A forecast of 50 % probability of rain on each day would be
well calibrated. So, would a forecast of 100% chance of rain on the first day, 0 %
chance of rain on the second day, 100 % chance of rain on the third day, etc. Thus,
if we interpet the result of Foster and Vohra (1993) as criticizing calibration as a
test to evaluate probability forecasts, what test should one use?

Rather than generate a list of possible tests, let us identify properties that one
would want a test of a probability forecast to satisfy. Formally, a test takes as input
a forecasting algorithm, a sequence of outcomes and after some period accepts the
forecast (PASS) or rejects it (FAIL). Sandroni (2003) proposed two properties that
such a test should have. The first is that the test should declare PASS/FAIL after
a finite number of periods. This seems unavoidable for a practical test. Second,
suppose the forecast is indeed correct i.e., accurately gives the probability of nature
in each round. Then, the test should declare PASS with high probability. We
call this second condition “passing the truth.” Call a test that satisfies these two
conditions a good test. A test based on calibration is an example of a good test.
Perhaps, there are good tests that cannot be ‘gamed’ in the way a calibration test
can. Formally, a forecaster with no knowledge of the underlying distribution that
can pass a good test with high probability on all sequences of data is said to have
ignorantly passed the test. Since this randomized forecast can pass the test for all
distributions it must be independent of the underlying (if any) distribution being
forecasted. Hence, in some sense, this forecast provides no information at all about
the process being forecasted.

1Lehrer (1997), Sandroni, Smorodinsky and Vohra (2003) and Vovk and Shafer (2005) give gen-

eralizations of this result.
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Remarkably, Sandroni (2003) showed that for every good test there exists a ran-
domized forecasting algorithm that will ignorantly pass the test. Therefore, no good
test can distinguish between a forecaster who knows the underlying distribution of
the process being forecast from one who simply ‘games’ the test. To see what drives
this result, consider a good test that must decide PASS/FAIL after one observation
only. Since the test must pass the truth, with one observation alone it must pass
every forecast! The jump from one observation to a finite number of observations
is not large because there are an infinite number of scenarios that agree on the first
n observations.

How then is one to get around the impossibility result of Sandroni (2003)? Dekel
and Feinberg (2006) as well as Olszewski and Sandroni (2007) do so by relaxing
one of the properties of a good test. For example, allowing the test to declare
PASS/FAIL at ‘infinity’, allowing the test to declare FAIL in a finite number of
periods but PASS ‘at infinity’ or relaxing the condition that the test always passes
the truth. These tests can often be made efficient in the sense that they can run in
time linear in the length of the current sequence but the number of forecasts before
a bad forecaster is failed could be extremely large as a function of the forecaster.

Olszewski and Sandroni (2008) have noted that the tests considered by Dekel
and Feinberg (2006) and Olszewski and Sandroni (2007) rely on counterfactual
information. Specifically, the test can use the predictions the forecast would have
made along sequences that did not materialize because the test has access to the
forecasting algorithm itself. As noted by Olszewski and Sandroni (2008) this is at
variance with practice. For this reason they consider tests that are not permitted
to make use of counterfactual predictions on the part of the forecaster but relax the
condition that the test must decide in finite time. Formally, two different forecasting
algorithms that produce the same forecast on a realization must be treated in the
same way. If such tests pass the truth with high probability they show that for
each such test, there is a forecasting algorithm that can ignorantly pass the test.

Al-Najjar, Sandroni, Smorodinsky and Weinstein (2008), take issue with the
assumption that the test has no prior whatsoever of the underlying distribution.
So, they examine what happens if the test knows that the distribution is drawn
from some suitably rich class of distributions. Can this prior knowledge be used
to construct a test that cannot be ignorantly passed? Their paper shows that yes,
this is the case. Essentially the authors have relaxed the condition that the test
must always pass the truth. So, if the forecaster makes a forecast inconsistent with
a distribution from this class, the forecaster is failed. Otherwise, the forecast is
evaluated according to the test proposed in Al-Najjar, Sandroni, Smorodinsky and
Weinstein (2008).

It is natural to ask if a test, using a proper scoring rule2 like log-loss, can cir-

2Assuming the forecaster is compensated on the basis of the scores associated with the rule, a

proper scoring rule gives the forecaster the incentive to reveal his/her true beliefs. See Good

(1952).
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cumvent these difficulties. Here one penalizes the forecaster log p if the forecaster
predicts a probability p of rain and it rains and a penalty of log(1− p) if it doesn’t
rain. The lowest possible score that can be obtained is the long-run average entropy
of the distribution. One could imagine the test passing the forecaster if the log loss
matches the entropy. However, such a test would need to know the entropy of
the distribution. As noted in the introduction, we are concerned with tests which
operate without any prior knowledge of the distribution. Proper scoring rules are
good methods to compare two forecasters but are not useful for testing the validity
of a single forecaster against an unknown distribution of nature.

2. COMPUTATIONALLY-BOUNDED FORECASTERS

Our paper approaches these questions by examining the consequences of imposing
computational limits on both forecaster and the test. We measure the complexity
as a function of the length of the history so far.

Most practical tests have a complexity that is polynomial in the length of the
history, so it seems reasonable to restrict attention to good tests that have a com-
plexity that is polynomial in the length of the history. Restricting the test in this
way, should make it ‘easier’ to be ignorantly passed. It seems natural to conjecture
that for every polynomial time good test, there exists a polynomial time randomized
forecasting algorithm that will ignorantly pass the test. However, as we show, this
is not the case. We exhibit a good linear time test that would require the forecaster
to factor numbers under a specific distribution, or fail the test. The existence of
an efficient (i.e. probabilistic polynomial time) algorithm for factoring composite
numbers is considered unlikely. Indeed, many commercial available cryptographic
schemes are based on just this premise. This result suggests that the ‘ignorant’
forecaster of Sandroni (2003) must have a complexity at least exponential in n.
Hence, the ‘ignorant’ forecaster must be significantly more complex than the test.
In particular its complexity may depend on the complexity of nature’s distribution.

To prove this result, we interpret the observed sequence of 0-1’s as encoding a
number followed by a list of its possible factors. A sequence that correctly encodes
a list of factors is called correct. The test fails any forecaster that does not assign
high probability to these correct sequences when they are realized. Consider now
the distribution that puts most of its weight on correct sequences. If the forecaster
can ignorantly pass the test, it must be able to identify sequences that correspond
to correct answers to our computational question. We also create an efficiently
samplable distribution that no forecaster can ignorantly pass without being able to
factor quickly on average.

The factoring proof does not generalize to all NP search problems, because we
need a unique witness (solution) in order to guarantee that the test always passes
the truth. Witness reduction techniques like Valiant-Vazirani (1986) don’t appear
to help.

Our second result strengthens the previous one by exhibiting a good test that re-
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quires the forecaster to solve PSPACE-hard problems by building on the structure
of specific interactive proof systems. In both cases the tests are deterministic. Fur-
thermore, they use only the realized outcomes and forecasts to render judgement.

In addition we consider the possibility that the test may have more computational
power than the forecaster. If we restrict ourselves to forecasters using time O(t(n))
there is a test T using time O(nO(1)t(n)) with the following properties.

(1) For all distributions of nature µ, T will pass, with high probability, a forecaster
forecasting µ.

(2) For some distribution τ of nature, for every forecaster F running in time
O(t(n)), T will fail F with high probability.

If one takes a highly non-computable distribution τ , a forecaster would not be
able to forecast τ well, but T could not test this in general if T is also required to
always pass the truth. In a nutshell, no forecasting algorithm can ignorantly pass
a good test that is more complex than itself.
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