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1. INTRODUCTION

Decision-Making lies in the foundations of fields such as Economics, Operations
Research, and Artificial Intelligence. The question of what should be the action to
be taken by a decision-maker when facing an uncertain environment, potentially
including other decision makers, is a fundamental problem which has led to a wide
variety of models and solutions. One of the only types of situations (of more
than a single agent) for which this question got an agreed-upon answer is in the
context of two-player zero-sum games. This setting can model any situation in
which a decision-maker aims at maximizing her guaranteed payoff. When mixed
strategies are allowed, such desired behavior, termed an agent’s maximin (or safety
level) strategy, leads to a well defined expected payoff (known as the value of the
game). Moreover, when presented explicitly in a matrix form, the computation of
a maximin strategy is polynomial (by solving a linear program).

Various equilibrium concepts have been considered in the game-theoretic litera-
ture, but none of them provides prescriptive advice to a decision-maker which will
be as acceptable as the maximin strategy solution in adversarial settings. Only
little attention has been given over the years to the challenging task of coming up
with game theoretic recommendations to the individual agent who plays in some
strategic environment. For a review of some exceptions see [Tennenholtz 2008].

Even within the setting of two-person zero-sum games, various scenarios may
arise which require new recommendations. In this letter we provide pointers to
two recent contributions that provide a decision maker with a prescriptive advice
on how to choose her action in two different adversarial settings. In [Alon et al.
2010] we study two-person zero-sum games in which the randomization phase of a
randomized strategy is not completely private; rather, some information about the
instantiation selected in the randomization phase leaks in an adversarial manner. In
[Feldman et al. 2010] we consider repeated symmetric two-person zero-sum games
in which one player never observes a single payoff (but does observe the opponent’s
play), where the opponent has full knowledge of the game.

2. INFORMATION LEAKAGE IN GAMES

Our model in [Alon et al. 2010] considers a two-player zero-sum game in strategic
form with payoffs 1 or 0, where the MAX player is our decision-maker and the MIN
player is the adversary. Both MAX and MIN have a set of (pure) strategies they
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can choose from (of sizes m and n, respectively). MAX chooses a mixed strategy,
that is, a distribution vector over its pure strategies. MIN may base its action
on the value of b binary predicates defined on MAX’ pure strategies; each such
predicate is a Boolean formula on the set of strategies, where the formula’s value
is determined according to the actual instantiation of MAX’ mixed strategy. The
parameter b can be thought of as the amount of information leakage regarding the
instance of MAX’ mixed strategy; MAX would like to maximize her guaranteed
expected payoff against such b binary predicates.

We consider two settings, distinguished by the information structure assumed
in them. In the Strong Model the MAX player chooses a mixed strategy, which
is observable by the MIN player, who can then act upon it in determining the b
predicates. In the Weak Model, the MIN player chooses the b predicates first, and
MAX can observe it and act upon it in choosing her mixed strategy.

We study the following questions. What is the optimal mixed strategy for the
MAX player in the two models? How well will the original maximin strategy of
the game perform? Finally, what is the computational complexity of finding the
optimal strategy under information leakage?

For the Strong Model, if the value of the original game is ¢ = 1 — ¢ (for small
positive €) and 2 is much smaller than 1/¢, then MAX can ensure value close to 1
(at least 1 — 2%), and this is tight. To do so, she simply uses the maximin strategy
(that is, the optimal mixed strategy for the original game with no predicates). On
the other hand, if 2° is much bigger than 1/e, then for every mixed strategy of
MAX, the MIN player can ensure value close to zero (at most 6’2176). Therefore,
for EVERY such game with value 1 —e¢, which is close to 1, a sharp transition occurs
at b which is about log(1/€): if b is slightly smaller, the value stays close to 1; if it
is slightly larger, the value drops to nearly zero.

For games with value ¢ bounded away from 1, even one bit enables MIN to
square the value and drop it to at most ¢, and every additional bit squares the
value again. There are also examples showing that this is essentially tight. Finally,
for any fixed value ¢ < 1, loglogm + O,(1) bits suffice to enable MIN to drop the
value to precisely 0.

For the Weak Model, the situation is different. Clearly, here MAX is in a better
shape, hence if the value of the game is ¢ = 1 — € (for small positive €), MAX can
still ensure a value close to 1 if the number of bits is much smaller than log(1/¢) as
in the Strong Model. For games with value ¢ bounded away from 1, however, there
are examples in which she can do much better than in the Strong Model, and in fact
can ensure no essential drop in the value as long as the number of leaking bits is
somewhat smaller than loglogm. More precisely, for any fixed value 0 < ¢ < 1 and
for every large polynomially related m, n, there are examples of games represented
by a binary m by n matrix with value g+ o(1), so that even if b = loglogm — O(1),
MAX can ensure that the value will stay roughly ¢. This should be contrasted with
the Strong Model, where every additional bit squares MAX’ value.

Somewhat surprisingly, once the number of leaking bits is slightly larger, that
is, b = loglogm + O(1), the MIN player can already ensure value 0 in any game
with a fixed value ¢ < 1. Thus, in the examples above a sharp transition occurs at
nearly b = loglogm under the Weak Model: nearly loglogm bits have essentially
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no effect on the value, while slightly more bits suffice to drop the value to 0.

Note that, in contrast to leakage-free settings, where no advantage is gained by
observing the opponent’s mixed strategy (due to the minimax theorem), in settings
of adversarial leakage, such information can contribute a great deal to the informed
player, reflected by the advantage obtained by MAX in the Weak Model compared
with the Strong Model.

With respect to computational complexity, computing the optimal strategy in
the Strong Model (for the MAX player) against b leaking bits is poly-time for any
fixed b, while this problem becomes NP-hard, or even to approximate within any
factor, for a general b. In the Weak Model, the optimal strategy of MAX can be
computed in polynomial time for every b.

3. PLAYING GAMES WITHOUT OBSERVING PAYOFFS

Our model in [Feldman et al. 2010] considers a symmetric two-person game that is
repeated 1" times, where one player — our decision maker — never observes a single
payoff (but observes the opponent’s play), while her opponent has full knowledge
of the game. Naturally, the decision maker should attempt to mimic the oppo-
nent’s play. However, one has to be careful about how one mimics opponents who
may know that they are being mimicked. As we show, a good copycat can reap
tremendous rewards without ever observing a single payoff, while a poor copycat
may perform worse than making random decisions.

We give a simple (easy to compute) repeated-game strategy for the uninformed
player using only the history of observed play of the opponent. The strategy in no
way depends on prior knowledge of the game (not even the number of strategies).
No assumptions are made about the opponent. Hence the strategy may, in extreme
cases, even be used by a player that is completely oblivious to payoffs, one who
never observes a single payoff and has no idea about what these might even be,
against an opponent that has complete knowledge of the game. The strategy has
the following guarantee: for any finite symmetric zero-sum n by n game A € R™"*",
any number of rounds T" > 1, and any opponent’s strategy, the expected average
payoff of the uninformed player in the first T rounds is at least —\/% max; j |a;j].

The COPYCAT strategy achieving the above bound is the following: on period ¢,
let V; € R™ ™ be the frequency matrix where V;(i,j) is the number of times (i, j)
has been played on periods 1,2,...,t — 1. The copycat strategy plays, on period t,
a min-max mixed-strategy of the zero-sum game with payoffs P, = V,' — V;.

We then consider several extensions. We first show that the uninformed player
need not even know the set of strategies in advance. Second, in general-sum sym-
metric games, we show that the COPYCAT strategy guarantees the uninformed
player an expected payoff that is nearly-equal that of the informed player. Third,
we note that the COPYCAT strategy yields learning equilibria [Brafman and Ten-
nenholtz 2004], a type of equilibrium for an entire family of games (a non-Bayesian
notion of equilibrium for games with incomplete information).

While two-player symmetric games are a central object of study in game theory,
our model of extreme informational asymmetry is new. Of course, such extremes
are less common than other situations. But the point here is to test the limits of
how much feedback a player needs to play a game. If the informed player has less
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knowledge, or the uninformed player has more feedback, the algorithm and analysis
can of course still be applied. In cases where determining the payoff is difficult or
costly, it is good to know that it is possible to simply copy. While this payoff-
oblivious setting is less common than bandit settings [Cesa-Bianchi and Lugosi
2006], we do feel that there are sufficient applications to merit study. Furthermore,
understanding this setting helps expand our general understanding of optimization
and game play under uncertainty.
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