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1. OVERVIEW

We are tasked with dividing up and selling a pool of resources among rational appli-
cants, and our goal is to make the allocation as efficient (or, perhaps, as profitable)
as possible. To what extent are optimal mechanisms approximated by simple sales
protocols? This question stands at the forefront of algorithmic mechanism design,
despite a lack of consensus on precisely what is meant by “simple.” While it’s
admittedly difficult to move past “I’ll know it when I see it,” a natural contender
for simplicity is sequential posted pricing. In a posted price mechanism, a seller
or platform uses their knowledge of the market to design a menu of prices that
are offered to customers as they arrive, who can then purchase whatever they like
while supplies last. This is certainly a natural and practical approach to allocating
resources, ubiquitous in real-world markets. But it is natural to wonder to what
extent the posted-price paradigm approximates the performance of more complex
market-resolution methods.

As it turns out, this question is closely related to the so-called prophet inequality.
The prophet inequality was proven in the 70s in the context of optimal stopping
theory, an offshoot of stochastic optimization. Since the connection between the
prophet inequality and pricing was introduced to the economics and computation
community a decade ago, numerous papers have extended the prophet inequality
and used its insights to develop methods of constructing prices for increasingly
complex markets.

In this survey, I give a brief overview of this literature through the lens of an
economically-oriented proof of the prophet inequality. Beyond the direct applica-
tions to pricing and mechanism design, this economic perspective turns out to be
useful for extending the reach of the prophet inequality as a tool for stochastic
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optimization and online algorithms. We will survey these connections through a
sequence of applications, beginning with the original prophet inequality and leading
to inherently combinatorial and multi-dimensional settings.

Outline of the Paper. In Section 2 I review the history of the original prophet
inequality in the stopping theory literature, and its connection to simple pricing
problems. In Section 3 I present a proof of the prophet inequality that is moti-
vated by the connection to pricing. Then in Section 4 I give an overview of results
that extend the prophet inequality to more complex optimization tasks, using the
economic proof as a guide but staying within the realm of single-parameter prob-
lems. After pausing in Section 5 to describe a unifying framework, I move on to
multi-dimensional extensions in Section 6. Then in Section 7 I circle back to the im-
plications for mechanism design. This survey will focus mainly on the connection
between prophet inequalities and welfare maximization (i.e., allocating resources
for economic efficiency), but at the end of the section I briefly describe applications
to revenue maximization as well. Finally, Section 8 concludes and suggests some
research directions for further exploration.

2. INTRODUCTION: A BRIEF HISTORY OF THE PROPHET INEQUALITY

Imagine that you are invited to play the following game. You are presented with a
sequence of n treasure chests. Each chest contains a cash prize, but the chests are
locked and you cannot see their contents. However, each chest has a distribution
over non-negative values printed upon it. You are told that the value of the prize
in each chest was drawn independently from its displayed distribution. The host
running the game will open the chests for you, one at a time. When a chest is
opened, you can see the prize and must make a choice. You can either accept the
prize, ending the game immediately; or you can reject the prize, in which case it is
lost to you forever and the game will proceed with the next chest. How should you
play this game to maximize your expected winnings?

The optimal strategy for this game can be worked out by backward induction.
If you reach the final chest, then it is certainly optimal to take its prize. This lets
you calculate your expected winnings if you play optimally, starting at round n.
Given this, the correct strategy for the second-to-last chest is to accept the prize if
and only if its value is greater than your expected winnings if you continue to the
final chest. This lets you calculate the expected winnings of the optimal strategy
beginning at round n−1. Iterating this reasoning yields an optimal strategy for the
entire game, corresponding to a non-increasing sequence of acceptance thresholds.

This type of stochastic optimization problem (and its solution) was well-studied in
the 70s, in the field of optimal stopping theory. Krengel and Sucheston [Krengel and
Sucheston 1978] asked the following question: how does the expected value of the
optimal strategy compare with the expected maximum prize? In other words, how
well does an optimal game contestant perform relative to an omniscient prophet,
who can see inside the chests and therefore trivially wins the best prize every time?
Krengel and Sucheston proved a multiplicative bound: the gambler’s expected win-
nings is always at least a quarter of the expected maximum prize. Garling then
noted (in a private communication) that this bound could be improved to half
the optimal prize [Krengel and Sucheston 1977]. The existence of a 2-approximate
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policy for this problem became known as the prophet inequality.
In fact, a simple example shows that this approximation factor of 2 is best-

possible. Suppose there are only two treasure chests. The first one deterministically
contains a prize of 1. The second chest contains 1/ε with probability ε, where
ε ∈ (0, 1] is arbitrarily small, and otherwise contains nothing. The maximum prize
is 1/ε with probability ε, and otherwise 1, so the expected maximum prize is 2− ε.
On the other hand, no strategy yields an expected value greater than 1. The first
chest always contains 1, and the contestant can either (a) take it (getting 1 for sure)
or (b) leave it, which means they must take a chance on the second chest whose
expected prize is also 1. There is therefore no policy with approximation factor
better than 2− ε for any ε > 0.

Later, Samuel-Cahn [Samuel-Cahn 1984] noted that one can achieve this same 2-
approximation using a particularly simple, non-optimal strategy: accepting the first
prize greater than a certain threshold θ [Samuel-Cahn 1984]. Moreover, it suffices
to set θ equal to the median of the distribution of highest prizes.1 It is notable
that this choice of θ is invariant to the order in which the prizes are revealed. This
strategy therefore remains 2-approximate even if the order is chosen by an adaptive
adversary who, in each round, can select the next chest to open based on the values
revealed in the previous chests.

Following the original prophet inequality established by Krengel, Sucheston, and
Garling, there was a significant line of work studying this optimality gap under
restrictions on the distributions, relaxations of the independence assumption, and
various classes of stopping rules and criteria. This literature is far too broad to
cover here, but we recommend the survey [Hill and Kertz 1992] for highlights. One
notable result from that line of work is that the factor of 2 can be improved if the
distributions are identical [Hill and Kertz 1982]. The tight approximation factor of
≈ 1.342 for identical distributions was established quite recently in the computer
science literature [Abolhassani et al. 2017; Correa et al. 2017].

2.1 The Pricing Connection

The prophet inequality was reintroduced to the economics and computation com-
munity by [Hajiaghayi et al. 2007], who noted a natural analogy to a simple pricing
problem. In this analogy, there is a seller with a single indivisible item to sell, such
as a used car. A sequence of n potential buyers, indexed 1, . . . , n, will approach
the seller one by one. Each buyer i has a private value vi for the car, drawn from
a distribution Di that is known to the seller. These distributions can potentially
vary between customers; for example, the seller might infer some information about
the buyer’s type from their apparel, the questions they ask about the vehicle, and
so on. The buyer and seller are free to negotiate using an arbitrary (and possibly
randomized) protocol, which ultimately leads to a decision to sell or not, and if so
at what price. Once the car is sold, future buyers must be turned away; and if a

1In this solution, there is a subtlety surrounding tie-breaking in the event that a prize is precisely
equal to θ. One could imagine a policy that always selects such a prize, and another policy that
always rejects such a prize. Samuel-Cahn shows that at least one of these two policies will yield

a 2-approximation, but neither policy works all of the time. Later, we will present another choice
of threshold that gives a 2-approximation regardless of the way such ties are broken.
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customer decides not to purchase and leaves, they never return.
Viewing the customers as treasure chests, the prophet inequality establishes the

existence of a sales protocol that guarantees at least half of the optimal gains from
trade (that is, social welfare) in expectation. Taken literally, the prophet inequality
would require that each buyer’s value be fully revealed to the seller upon arrival,
similar to observing the prize when a treasure chest is opened. But recall Samuel-
Cahn’s solution, which is to simply accept the first buyer whose value exceeds a
threshold θ. This protocol can be implemented even when buyer values are private,
and has a very natural interpretation: post a take-it-or-leave-it price of θ on the
car, and simply allow each customer to purchase if they so choose, while supplies
last.

We can conclude that a simple posted-price mechanism gives a 2-approximation
to the optimal welfare, regardless of the order in which customers arrive. Moreover,
no other mechanism can improve upon this guarantee, since the lower bound exam-
ple described above extends directly to any equilibrium of any sales protocol: the
first customer is known to the seller to have value 1, so any sales protocol simply
reduces to the seller choosing whether or not to sell to the first buyer, and the lower
bound follows.

This posted-price mechanism is simple, natural, and practical. It has many
desirable properties, even among other pricing methods. Its choice of price is:

Anonymous. All customers are offered the same price, regardless of their type
distribution.

Static. The choice of which price to offer which customer does not change as the
mechanism progresses.

Order-Oblivious. The pricing rule does not depend on the order in which agents
arrive, and in fact the order can be chosen by an adaptive adversary.

Moreover, since each customer is simply offered a take-it-or-leave-it price that
they can choose to accept or not, the mechanism is ex post individually rational and
incentive compatible in dominant strategies. In fact, it is obviously strategyproof [Li
2017], since each customer has at most one strategic decision to make (whether or
not to purchase), and their payoff is not affected by anything that occurs after that
decision is made. It is also weakly group strategyproof (i.e., resilient to collusion
between customers), since no customer can, through his or her actions, reduce the
price offered to any other customer. This solution is so appealing that it naturally
begs the question: can we extend it to more complex allocation problems as well?

3. AN ECONOMIC PROOF OF THE PROPHET INEQUALITY

Before presenting extensions to other optimization problems, we will pause here to
present a proof of the prophet inequality. This is a variation on an argument by
Kleinberg and Weinberg [Kleinberg and Weinberg 2012], and mathematically the
arguments are very similar. Nevertheless, I want to present the proof below because
it inherently makes use of the connection between prophet inequalities and posted
prices. The resulting economic interpretation will be convenient when we move on
to extended settings that require more nuance.
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We want to prove that there exists a threshold policy yielding, in expectation, at
least half of the expected maximum value. To simplify notation, let us write V ∗ for
the random variable whose value is maxi vi, the maximum of the n realized prizes.
The threshold policy we will consider is the one that accepts the first prize whose
value exceeds 1

2 E[V ∗], if any, where the expectation is over the realization of the
prizes.2 We must show that the expected prize generated by this policy is at least
1
2 E[V ∗].

Theorem 3.1 [Kleinberg and Weinberg 2012]. The policy that accepts the
first prize that is at least 1

2 E[V ∗] has expected reward 1
2 E[V ∗]. This is true regard-

less of the decision made when a prize is equal to 1
2 E[V ∗].

To prove this, we will view the threshold policy as setting a price of p = 1
2 E[V ∗]

on an indivisible good for sale, and then allowing n bidders, each with a value vi
drawn from Di, to sequentially choose whether or not to purchase. This is certainly
equivalent to the threshold policy, with the expected gains from trade (i.e., welfare)
taking the role of the expected prize won. These gains are made up of two parts: the
expected revenue, which forms the seller’s utility, and the expected buyer surplus,
which is the sum of buyer utilities. We will bound these two parts separately.

Revenue: The expected revenue of this policy is simply p times the probability
that the item is sold. So, by the choice of p, the expected revenue is

1

2
E[V ∗] ·Pr [ item is sold ] . (1)

Buyer Surplus: Note that if the item is not sold by the time the process reaches
buyer i, then buyer i can choose to purchase the item if she so desires. The expected
utility of buyer i is therefore at least (vi − p)+ := max{vi − p, 0}, in the event that
the item is not sold before buyer i has a chance to purchase. But, crucially, whether
or not the item is sold prior to i’s decision is independent of i’s value. The expected
buyer surplus is therefore at least∑

i

E[(vi − p)+] ·Pr [ i has a chance to purchase ] . (2)

Suppose that the item is left unsold at the end of the process, after all the buyers
have come and gone. Then it must be that every customer had a chance to purchase.
This means that (2) is at least(∑

i

E[(vi − p)+]

)
·Pr [ item is unsold ] .

Then since ∑
i

E[(vi − p)+] ≥ E[max
i

(vi − p)+]

≥ E[max
i
vi]− p

= 1
2 E[V ∗],

2Recall that this is not the policy originally proposed by Samuel-Cahn [Samuel-Cahn 1984].
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we conclude that the expected buyer surplus is at least

1

2
E[V ∗] ·Pr [ item is not sold ] . (3)

Adding (1) and (3), we conclude that the expected welfare generated by this sales
process is at least 1

2 E[V ∗], as desired.

3.1 Discussion

Why was 1
2 E[V ∗] the “right” price to use? We can view this threshold as balancing

between two ways in which the prophet inequality can fail. If the price is too low,
then a low-valued buyer might purchase, denying the chance to a higher-valued
buyer later on. If the price is set too high, it becomes increasingly likely that no
buyer purchases and the item is left unsold, generating no welfare.

The main idea behind the proof above is that revenue and surplus cover these
two failure cases, respectively. The revenue of the pricing mechanism offsets the
expected opportunity cost of serving a customer. That is to say, the price is high
enough to discourage purchase by those whose value is too low relative to the
expected maximum value.

On the other hand, the aggregate buyer surplus offsets the expected value “left
on the table” — i.e., that could have been served in retrospect. Intuitively, if the
item often goes unsold, then it must also be the case that each buyer often has
an opportunity to purchase. The price 1

2 E[V ∗] is low enough that the buyers can
successfully leverage these opportunities to obtain high expected utility.

The Smoothness Connection. Notably, the latter half of the argument above —
i.e., the bound on buyer surplus — requires only that agents have the opportunity
to purchase. It does not require us to analyze which customer actually buys the
item. This is reminiscient of the recent literature on smoothness and the price
of anarchy [Roughgarden 2012; Syrgkanis and Tardos 2013], where the goal is to
analyze the efficiency of an auction at equilibrium but the nature of the game is
too complex to fully characterize equilibrium outcomes. The smoothness paradigm
bounds the performance of an auction (or, more generally, a game) using only
the existence of profitable actions, regardless of whether or not those actions are
actually taken by the participating agents. As it turns out, this connection will
be helpful when we later extend the prophet inequality to more general settings.
As we shall see, many price of anarchy results established via smoothness have
corresponding prophet inequalities. We discuss this connection further in Section 5.

Comparison with Market Prices: It is instructive to compare the prophet
inequality with the notion of a market-clearing price. Consider a deterministic,
full-information version of the problem, where the customer values are known in
advance. In this situation, the problem becomes trivial: setting price maxi vi yields
the fully efficient outcome, assuming that customers buy in case of indifference. In
fact, any price that lies strictly between the maximum value and the second-highest
value would result in the efficient outcome, and causes each buyer to be “satisfied”
in the sense of always being able to buy the item if they value it more than its
price. This is a special case of Walrasian equilibrium, which characterizes a lattice
of market-clearing prices that guide the market toward an optimal assignment of
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goods [Kelso and Crawford 1982]. In comparison, the prophet inequality price
guarantees only an approximation to the optimal welfare, and does not guarantee
that each customer ends up with a utility-maximizing purchase, but it applies even
when there is uncertainty in the market — that is, when buyer values are stochastic
— and does not rely on the nature of tie-breaking.

Robustness: In additional to being robust to how ties are broken in case of indif-
ference, this proof of the prophet inequality is also highly robust to market misspec-
ification. Namely, if the price we choose is perturbed slightly — say, 1

2 E[V ∗]± ε —
then the resulting welfare guarantee degrades gracefully to 1

2 E[V ∗]−ε.3 This makes
it possible to estimate an appropriate price, given a limited number of samples from
the value distributions, with only a small loss in performance. This robustness to
sampling errors is interesting in and of itself, and will be particularly useful when
we extend to more complex settings and must address concerns of efficient compu-
tation. This robustness can be pushed further to derive prophet inequalities with
even just a single sample from each distribution [Azar et al. 2014].

4. VARIATIONS: ACCEPTING MULTIPLE PRIZES

We now turn to extensions of the prophet inequality to broader optimization tasks.
In this section, we survey extensions of a particular form. There is still a se-
quence of treasure chests, each containing a single prize drawn independently from
a chest-specific distribution, and acceptance or rejection decisions are still irrevo-
cable. However, it may be possible to accept more than one prize. Such a problem
is specified by some constraint on the sets of prizes that can be simultaneously
accepted.

It will be helpful to fix some notation. We will index the chests by 1, . . . , n. We
will assume that the chests arrive in this order for notational convenience, although
many results are order-oblivious and hold even when the arrival order can be chosen
adversarially. We’ll write vi for the prize in chest i, which is a random variable
drawn independently from distribution Di. We will write vectors in boldface, so
that v = (v1, . . . , vn) is the profile of all prizes. An allocation is a choice of which
chest(s) to accept. We will write F for the set of feasible allocations. We will always
assume that F is downward-closed, meaning that any subset of a feasible allocation
is also feasible. We will write OPT(v) for the maximum total value attainable by
any feasible allocation, in retrospect.

For example, in the original prophet inequality, F consists of all singletons plus
the empty allocation, and for any profile of values v we have OPT(v) = maxi vi.

4.1 Extension 1: Accepting up to k Prizes

In addition to interpreting the prophet inequality in the context of posted prices,
Hajiaghayi, Kleinberg, and Sandholm [Hajiaghayi et al. 2007] gave a natural exten-
sion to the case where up to k ≥ 1 prizes can be accepted. In the pricing analogy,

3While it’s true that a small change in the price could increase or decrease the probability of sale
dramatically, this only causes a shift between the revenue and buyer surplus, and the argument

described above still goes through essentially unchanged. One simply uses p ≥ 1
2
E[V ∗] − ε and

p ≤ 1
2
E[V ∗] + ε in the final lines of the revenue and surplus bounds, respectively.
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there are k identical items for sale, and each buyer is interested in at most one. Not
only does the prophet inequality extend, but in fact the achievable approximation
factor improves, tending to 1 in the limit as k grows.

Theorem 4.1 [Hajiaghayi et al. 2007]. In the prophet inequality setting where
k ≥ 1 prizes can be accepted, there is a fixed threshold strategy achieving approxi-

mation factor at most 1 +
√

8 ln(k)
k .

The idea behind their argument is a natural one: choose a price p so that the
expected number of buyers who want to purchase — i.e., with value at least p —
is a little less than k: say k − δ for some appropriately-chosen value of δ. We can
interpret this p as the solution to a fractional relaxation of the problem, with a
somewhat stricter feasibility constraint (k− δ instead of k). If δ is chosen properly,
standard concentration bounds imply that the actual number of buyers with realized
value greater than p will lie between k − 2δ and k, with high probability.

Let’s prove the claim that, for any v such that this event occurs, the welfare
generated is at least (1 − 2δ

k )OPT(v). One way to see this is with a slight twist
on the economic proof from Section 3, bounding separately the revenue and buyer
surplus. This is very similar to the proof outlined by Hajiaghayi, Kleinberg, and
Sandholm [Hajiaghayi et al. 2007].

Revenue: Since at least k − 2δ customers will purchase, the revenue generated is
at least (k − 2δ)p.

Buyer Surplus: Since at most k buyers have value greater than p, each buyer
who wanted to purchase at this price had an opportunity to do so. Similar to the
single-item case from Section 3, this implies that the total buyer surplus is at least∑
i(vi − p)+. Since the sum is at least the value of its top k terms, and since

OPT(v) is precisely the sum of the k largest values in v, we conclude that the
expected buyer surplus is at least

OPT(v)− kp.

Multiplying this bound on the buyer surplus by k−2δ
k and adding the revenue com-

pletes the claim.
It turns out that setting δ =

√
2k log k provides an appropriate tradeoff between

the probability that the number of customers wishing to purchase lies strictly be-
tween k − 2δ and k, and the approximation guarantee of (1 − 2δ

k ) subject to that

event. This ultimately leads to an approximation factor of 1 +O(
√

log k/k).
In addition to this upper bound, [Hajiaghayi et al. 2007] also established a lower

bound of 1 + Ω(1/
√
k) for any online protocol. Alaei [Alaei 2014] later provided an

improved upper bound of (1− 1/
√
k + 3)−1, matching this lower bound. Notably,

in addition to being asymptotically optimal, this improved bound recovers the tight
bound of 2 for k = 1.

4.2 Extension 2: Matroid Constraints

Matroids are one of the most well-studied classes of downward-closed set systems.
A downward-closed feasibility constraint F forms a matroid if, for each S, T ∈ F ,
if |S| < |T | then there exists some a ∈ T\S such that S ∪ {a} ∈ F . We refer a set
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that is feasible with respect to a matroid as independent. Matroids generalize the
cardinality constraints from Section 4.1. An illustrative example is the graphical
matroid: the buyers correspond to the edges in a fixed graph G, and it is feasible
to sell to a subset S of buyers if and only if S does not contain a cycle.

Kleinberg and Weinberg [Kleinberg and Weinberg 2012] extended the prophet
inequality to all matroid constraints. In particular, for any matroid F , they pre-
sented a pricing policy that yields a approximation factor of 2. Their protocol is
order-oblivious and allows an adaptive adversary to choose the arrival order, but
the prices used in their policy are dynamic and personalized (as opposed to static
and anonymous).

To define their pricing rule, we must first define what is meant by a residual value.
Take any feasible set of buyers S, and suppose T is optimal feasible allocation from
among those that contain S. That is, T maximizes

∑
i∈T vi subject to T ∈ F and

S ⊆ T . Then the residual value after S is OPT(v | S) = v(T ) − v(S). In other
words, the residual value is the maximum total value remaining, in a world where
the elements of S have already been taken.

The pricing rule of Kleinberg and Weinberg is now as follows. When buyer i
arrives, suppose that S is the set of buyers that have already been served. If S∪{i}
is feasible, then buyer i will be offered price

pi =
1

2
E[OPT(v | S)− OPT(v | S ∪ {i})]. (4)

We can interpret this price as half the opportunity cost of providing service to buyer
i, given the decisions that have already been made by the time buyer i arrives. If
S ∪ {i} is infeasible, then buyer i cannot purchase; we can think of this as setting
pi =∞.

Theorem 4.2 [Kleinberg and Weinberg 2012]. Under the pricing scheme
described above, the expected welfare generated is at least 1

2 E[OPT(v)].

Why do these prices work? Again, we can take intuition from the economic
proof of the prophet inequality. To convey this intuition, let’s consider the full-
information version of the problem, where all agent values are known in advance.4

In this case, the prices and purchasing decisions are deterministic; we can write S
for the set of buyers who ultimately purchase, and write S<i for the set of buyers
who purchase before i arrives. Then if S<i ∪ {i} is feasible, the price offered to
agent i is

pi =
1

2
(OPT(v | S<i)− OPT(v | S<i ∪ {i})) . (5)

Again, let’s bound the revenue and buyer surplus generated by these prices.

Revenue: The prices are defined precisely so that the revenue offsets the opportu-
nity cost of serving the buyers who are accepted. Recall that S is the set of buyers
who accept their prices. By a telescoping sum, the total revenue generated is equal

4The deterministic setting admits simpler proofs than the one we describe here. We are neverthe-

less interested in this economic proof in part because it extends directly to the general problem
with stochastic values, and builds intuition for that more general argument.
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to ∑
i∈S

pi =
∑
i∈S

1

2
(OPT(v | S<i)− OPT(v | S<i ∪ {i}))

=
1

2
(OPT(v)− OPT(v | S)). (6)

Buyer Surplus: We claim that the prices are set low enough that the total buyer
surplus is at least half of the residual value left when the mechanism completes. The
proof of this claim requires some facts about matroids, and we will not reproduce
it here, but it is captured in the following proposition:

Proposition 4.3 [Kleinberg and Weinberg 2012]. For any sets S and T
such that S ∪ T ∈ F , the sum of prices offered to T is at most 1

2OPT(v | S).

If S is the set of agents who purchase, and T is the set of maximum total value
such that S ∪ T is feasible, then (by downward-closedness of F) it must be that
each customer in T had the opportunity to purchase. We therefore have that the
total buyer surplus is at least

∑
i∈T (vi − pi), which by Proposition 4.3 is at least∑

i∈T vi −
1
2OPT(v | S). But from our choice of T ,

∑
i∈T vi = OPT(v | S), and

hence the total buyer surplus is at least

1

2
OPT(v | S). (7)

Adding the revenue bound (6) to the buyer surplus bound (7) gives the desired
welfare bound of 1

2OPT(v).

We went through the reasoning above for the full-information version of the
problem. In fact, the argument extends almost immediately to arbitrary value
distributions, by considering the expected revenue and buyer surplus and making
liberal use of the magic of linearity of expectation.5 Indeed, we can (and should)
interpret each price from (4) as precisely the expectation — over the distribution of
buyer types — of the price (5) we chose to post in the full-information version of the
problem. This has the flavor of an extension theorem: to solve the stochastic version
of the problem, it suffices to produce a sufficiently well-behaved solution to the full-
information version. The general solution then follows by taking expectations. As
we will see, this is no accident — a similar extension result captures many prophet
inequality proofs in the literature, and we will formalize this in Section 5.

Beyond a Single Matroid. In addition to proving a prophet inequality for ma-
troid constraints, Kleinberg and Weinberg showed that this extends to a approx-
imation factor of (4k − 2) for the intersection of k matroids, and that this linear
dependence on k is necessary. Feldman, Svennson and Zenklusen later improved
this upper bound to e(k+1) [Feldman et al. 2015]. Dütting and Kleinberg extended
the matroid result to a 2-approximate prophet inequality for polymatroids, which
are natural convex relaxation of matroid constraints [Dütting and Kleinberg 2015].

5There is an important subtlety when bounding the expected buyer surplus. In particular, one

has to be careful about introducing correlation between S>i and T . A common approach is to

take expectations twice: once to determine S, and then a second time to determine T . We discuss
this further when we present a more general framework in Section 5.
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Finally, [Rubinstein and Singla 2017] extend the matroid prophet inequality to
settings where the objective function is not necessarily additive over the elements
selected, but can instead be an arbitrary submodular function; they establish a
prophet inequality with constant approximation factor for this problem.

4.3 Extension 3: Knapsack Constraints

In a knapsack constraint, each customer i is associated with a size si ∈ [0, 1] in
addition to their value vi. The feasibility constraint is that a set S of customers
can be simultaneously satisfied if and only if

∑
i∈S si ≤ 1.

Fractional Knapsack. Feldman, Svennson, and Zenklusen considered prophet
inequalities for knapsack constraints, but under a fractional relaxation of the prob-
lem [Feldman et al. 2015]. In this relaxed problem, we can allocate each agent
a level of service xi ∈ [0, 1]. The total value generated is then

∑
i xivi, and the

feasibility constraint is
∑
i xisi ≤ 1. We recover the original knapsack problem by

restricting each xi to lie in {0, 1}. Note that, unlike the previous examples, here we
can serve each customer in multiple possible ways. The interpretation of a prophet
inequality in this setting is that each customer, upon arrival, must be assigned a
service level xi ∈ [0, 1]. This decision is irrevocable and cannot be modified once
made. Once each customer’s level of service has been determined, the next cus-
tomer arrives. The pricing analogy for this problem is natural: there is a single
unit of a divisible resource for sale, and each customer i has value vi/si per unit of
good received, up to a maximum of si units.

A prophet inequality with constant approximation factor for fractional knap-
sack constraints was first established by [Feldman et al. 2015]. The approximation
factor was subsequently improved to 2 by [Dütting et al. 2017]. Moreover, this
2-approximate prophet inequality applies even if, for each customer i, both the size
si and value vi are privately known to the customer and arbitrarily correlated with
each other. That is, one can think of (vi, si) as the type of customer i, and we allow
types to be drawn from some (known) distribution over tuples.

The approach of Dütting et al. is to post a static, anonymous price p per unit
of the resource, then offer this price to each arriving customer and allow them to
purchase as much of the good as desired, while supplies last. If we write V ∗ for the
random variable denoting the total value of the optimal allocation (over randomness
in the type profile), the price posted by the seller is p = 1

2 E[V ∗].

Theorem 4.4. For the knapsack problem described above, the policy that posts
a per-unit price of 1

2 E[V ∗] and allows each buyer to purchase their desired quantity
(up to the amount remaining) has approximation factor 2.

Why is this the right price to post? As with matroid constraints, it is useful to
first consider the full-information version of the problem, where the customer types
are known to the seller in advance. In this case, write x∗ for the optimal allocation,
which has total value V ∗ =

∑
i vix

∗
i . Then the seller will post price 1

2V
∗. Again,

we will bound separately the revenue and buyer surplus of this pricing policy.

Revenue: Suppose that a total of Y ≤ 1 units of the good are sold by the pricing
policy. Then the revenue generated is simply p · Y , which is equal to

1
2V
∗ · Y. (8)
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Buyer Surplus: Note that since Y units are sold in total, there are at least 1−Y
units available to be purchased by each customer. In particular, there is enough
left over to provide each customer with their optimal allocation, six

∗
i , scaled down

by a factor of (1− Y ). So each customer must get at least as much utility as they
would by purchasing six

∗
i (1− Y ) units. This yields a welfare bound of

∑
i

(vi − psi)x∗i (1− Y ) =

(∑
i

(vix
∗
i )− p ·

∑
i

(six
∗
i )

)
· (1− Y )

≥ (V ∗ − p) · (1− Y )

= 1
2V
∗(1− Y ) (9)

where in the inequality we used the fact that
∑
i six

∗
i ≤ 1. Adding the revenue and

buyer surplus bounds from (8) and (9), we have that the total welfare is at least
1
2V
∗.

As with the argument for matroid constraints, this bound extends directly to
the general stochastic version of the problem by taking expectations and exploiting
linearity. The expected revenue will be p = 1

2 E[V ∗] times the expected quantity
sold, which is 1

2 E[Y ]. To bound the expected buyer surplus, we note that each
buyer i obtains at least as much utility as they would if they used the following
strategy: purchase the quantity they expect to receive in the optimal allocation
(given their type, with expectation taken over the types of the other customers),
scaled down by the amount of resource available. This gives an expected surplus
that is at least (E[V ∗]−p) = 1

2 E[V ∗] times the expected quantity left over, E[1−Y ].
Adding these two quantities gives an expected welfare bound of 1

2 E[V ∗].

Integral Knapsack. The argument above applied to a fractional knapsack con-
straint. Dütting et al. further established a prophet inequality with approximation
factor 5 for integral knapsack constraints [Dütting et al. 2017]. This result also
employs a static, anonymous price.

Their argument follows the same general pattern as the arguments we have seen
so far, but considers separately the contribution of buyers with si > 1/2 (the “large”
buyers) and buyers with si ≤ 1/2 (the “small” buyers) to the optimal welfare. The
large buyers are easy to handle: since an optimal allocation can accept at most one
large buyer, the original prophet inequality implies the existence of a single take-
it-or-leave-it price, for the entire quantity of good, that gives a 2-approximation to
the welfare contribution of large buyers. For small buyers, a slight variation on the
fractional knapsack argument above, using 2

3V
∗ for the per-unit price rather than

1
2V
∗, yields a 3-approximation to the optimal welfare attainable from small buyers.

Combining these two bounds and considering the worst case over combinations of
large and small buyers leads ultimately to an approximation factor of 5.

Finally, a brief note about computation. The prices for the “small-buyer” case
were based on an optimal allocation x∗, but recall that finding such an optimal
allocation is an NP-hard task! Fortunately, this argument applies even if x∗ is only
an approximately optimal allocation, in which case the approximation factor of the
prophet inequality degrades by the approximation factor of the allocation method.
In particular, we can use the allocation returned by an FPTAS for knapsack [Ibarra
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and Kim 1975] and obtain a (5 + ε)-approximate prophet inequality using prices
that can be computed in polynomial time.

4.4 A Lower Bound: General downward-closed constraints

Given our success so far at deriving prophet inequalities with constant approxima-
tion factors, it is tempting to ask whether there is a constant prophet inequality for
arbitrary downward-closed feasibility constraints. As it turns out, this is not the
case. Babaioff, Immorlica and Kleinberg established a lower bound for secretary
problems, which also implies the following lower bound for prophet inequalities.

Theorem 4.5 [Babaioff et al. 2007]. There exists a downward-closed feasi-
bility constraint for which no online acceptance protocol can achieve approximation
factor better than Ω(log n/ log logn). In this example, the values are drawn i.i.d.
from a distribution supported on {0, 1}, and the arrival order is non-adaptive.

An Upper Bound. A prophet inequality for arbitrary downward-closed feasibility
constraints was established by [Rubinstein 2016]. The policy is randomized and
yields an approximation factor of O(log n log r), where r is the size of the largest
feasible set. It remains open to determine whether this dependence on r can be
removed, or whether a similar approximation can be obtained with a deterministic,
price-based policy.

5. INTERLUDE: BALANCED PRICES

The arguments from the previous section all follow a similar general paradigm. For
any given deterministic set of values, exhibit prices that satisfy two properties: (a)
the prices are high enough that the revenue generated from any outcome offsets
the opportunity cost of making those selections, and (b) the prices are low enough
that the buyer surplus offsets any residual value left on the table when the process
ends. Posting these prices leads to an approximation result for the deterministic
optimization problem. The more general stochastic result then follows by taking
expectations. In this section, we make this extension theorem explicit.

Recalling that prices might be dynamic (as for matroids) and the outcome space
for each buyer might not be binary (as for fractional knapsack), we’ll need to intro-
duce some notation. We will represent an allocation by a vector x = (x1, . . . , xn),
with xi representing the decision made in round i of the game. As before, we will
tend to assume that customers arrive in the order they are indexed for convenience,
although most results we discuss are order-oblivious. We’ll say that a pricing rule
assigns a price pi(x | y) to each potential outcome x for agent i, given that partial
allocation y has already been made and x is feasible given y. We’ll write x<i for
the allocation made to agents prior to i, so that pi(xi | x<i) is the price offered to
agent i, in order to get outcome xi, given that the previous buyers made selections
x1, . . . , xi−1.

Given some allocation x, we’ll write Fx for the set of “residual” allocations that
are disjoint from x, and can be combined with x to form a feasible allocation. For
example, if F is the set of all allocations that accept at most 5 prizes, and x is the
allocation that accepts prizes 4 and 7, then Fx contains all allocations that accept
at most 3 prizes, none of which are 4 or 7. Recalling the notion of marginal value
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from the matroid extension, we will write OPT(v | x) for the maximum possible
residual value over all allocations in Fx. That is, OPT(v | x) = maxy∈Fx

∑
i vi(yi).

Balanced Prices. The following definition describes what it means for a set of
prices to be “balanced” for a deterministic set of values v. This is a variation
on a notion of balanced thresholds due to [Kleinberg and Weinberg 2012]. The
main difference is that the definition below is extended to allow a more general set
of outcomes, which will be useful when we consider multi-dimensional settings in
Section 6. We also note that Kleinberg and Weinberg considered balancedness with
respect to a profile of distributions, rather than a fixed valuation profile.

Definition 5.1. For α, β > 0, a pricing rule p is (α, β)-balanced for valuation
profile v if for all x ∈ F ,

(1)
∑
i∈N pi(xi | x<i) ≥

1
α ·
(
OPT(v)− OPT(v | x)

)
, and

(2) for all x′ ∈ Fx:
∑
i∈N pi(x

′
i | x<i) ≤ β · OPT(v | x).

If in the second condition we replace the right hand side with β ·OPT(v) (a weaker
condition), we say p is weakly (α, β)-balanced.

The definition of (α, β)-balancedness captures sufficient conditions for a posted-
price mechanism to guarantee high welfare when agents have a known valuation
profile v. Condition 1 precisely states that the revenue generated by allocating
some x is at least some fraction of the value lost due to allocating x. Condition 2
states that, for any residual allocation x′ that is possible after x has been allocated,
the total price of x′ is not too large relative to the optimal residual welfare. As
we’ve now shown in multiple examples, these two conditions are sufficient to derive
a welfare bound when the values are known in advance. In the relaxation to weak
balancedness, we require only that the total price of any allocation is not too large
relative to the optimal (non-residual) welfare. Since any residual welfare is bounded
by the optimum total welfare, this is indeed a weaker requirement.

An Extension Theorem. Our interest in (α, β)-balanced pricing rules comes
from the fact that their implied welfare bounds for deterministic instances extend
to stochastic settings as well.

Theorem 5.2 [Dütting et al. 2017]. Suppose that, for each valuation profile
v in the support of the buyers’ distributions, the pricing rule pv is (α, β)-balanced
for v. Then for δ = α

1+αβ the posted-price mechanism with pricing rule δp, where

pi(xi | y) = Eṽ[pṽi (xi | y)], generates welfare at least 1
1+αβ ·Ev[OPT(v)]. If instead

pv is weakly (α, β)-balanced, then we can take δ = min{α, 1/2β} and the welfare
generated is at least 1

4αβ · Ev[OPT(v)].

The intuition behind Theorem 5.2 follows the economic prophet inequality argu-
ments we have seen so far. The definition of balancedness almost directly implies
a welfare result for a deterministic value profile, with a revenue bound following
directly via telescoping sum and a surplus bound following by having each buyer
consider purchasing x′i, where x′ ∈ F is the welfare-optimal allocation in Fx. The
extension result then follows by taking expectations over value profiles. Some care
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is needed to maintain independence between purchasing decisions when taking ex-
pectations in this way; we refer the interested reader to [Dütting et al. 2017] for
further details.6

Example 5.3. As a simple example of how to apply Theorem 5.2, consider again
the standard prophet inequality from Section 3. Here, each xi is either 1 (accept)
or 0 (reject). Consider the pricing rule given by pi(1 | x) = maxi vi. That is, each
customer is offered a price of maxi vi for purchasing, as long as it is feasible to do
so. This price rule is static and anonymous. It is also easy to check that it is (1, 1)-
balanced: for the first condition, the sum of prices for any non-empty allocation
is maxi vi, which is equal to the optimal outcome. For the second condition, x′ is
non-trivial only if x does not allocate the item, in which case the price of allocating
to any agent is maxi vi which, again, is equal to OPT(v | x). Taking δ = α

1+αβ = 1
2 ,

our theorem directly implies that setting price 1
2 E[maxi vi] leads to the original

prophet inequality with approximation factor 2.

Theorem 5.2 is stated for general pricing rules. Note, however, that if pv is
static, anonymous, and/or order-oblivious for each v, then the prices suggested by
Theorem 5.2 inherit these properties as well.

The strength of Theorem 5.2 comes from the fact that it’s sufficient to consider
only deterministic instances when constructing prices. As it turns out, this simpli-
fication will be particularly helpful when we consider broader, multi-dimensional
scenarios in the next section.

The Smoothness Connection Revisited. A crucial aspect of Theorem 5.2 is
that, when bounding the performance of the price-based policy, it is not necessary
to explicitly analyze which items are purchased by which buyers. When bounding
the buyer surplus, it suffices to consider only potential actions of the buyers, and
in particular to argue that prices are low enough to enable certain “high-utility”
buying strategies. This trick has the most bite when buyers have many possible
actions available, such as when there are multiple items for sale; we consider such
multi-item scenarios in the next section. As we noted in Section 3, this argument
is reminiscient of the so-called smoothness method for bounding the welfare of a
mechanism at equilibrium [Roughgarden 2012; Syrgkanis and Tardos 2013]. In a
smoothness argument, one derives a bound on the utility of buyer by considering
a simple “deviation” strategy that they could have played. Similarly, our proof
bounds each buyer’s utility by considering a certain canonical item — or set of
items — that they could have purchased. Mathematically these arguments have
similar structure, and indeed the prophet inequalities we will establish in Section 6
using Theorem 5.2 have approximation factors that are similar to known smoothness
bounds for related auctions [Christodoulou et al. 2016; Syrgkanis and Tardos 2013].

6Roughly speaking, when bounding the buyer surplus, it is important to maintain independence

between what agent i considers purchasing and what subsequent agents actually purchase. This

can be handled by taking expectations twice: once to determine the actual agent values, and hence
what agents will actually purchase; and then a second time to define the x′i that agent i considers

purchasing. This can be interpreted as having the agent “hallucinate” random valuations v′ for

the other agents, and consider purchasing according to the residual allocation x′ that would be
welfare-optimal for v′. See [Dütting et al. 2017] for further details.
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6. MULTI-DIMENSIONAL PROPHET INEQUALITIES

So far we have focused on situations where a single value vi is revealed in each
round, and the decision-maker chooses whether or not to accept the value (or, in
some cases, a level of fractional acceptance). In this section, we turn to scenarios
where the decision-maker must make a more involved decision in each round. For
example, there may be multiple chests opened each round, and the optimizer can
accept some subset of them. In terms of our pricing analogy, this might correspond
to a seller with multiple heterogeneous products to sell. As in the case of a single
item, we will be particularly interested in price-based solutions: the seller assigns a
price to each potential choice, and then for each buyer the allocation chosen is the
one that maximizes the buyer’s utility at those prices.

This section is based heavily on [Feldman et al. 2015], which studies high-welfare
posted-price mechanisms for combinatorial auctions, and [Dütting et al. 2017],
which applies the concept of balanced prices to a variety of stochastic optimiza-
tion problems.

6.1 Matching Markets

Let’s begin with a simple extension of the standard prophet inequality to a multi-
item setting. In this scenario, there are multiple items for sale, and each arriving
customer i has some value vij for each item j. The values are assumed to be
independent across customers, but a single customer’s values can be arbitrarily
correlated across items. The customers are unit-demand, which is to say that each
customer wants at most a single item. Here we let xi be the item allocated to agent
i, or ∅ if agent i obtains no item.

This scenario was studied by [Alaei et al. 2012], who presented a 2-approximate
prophet inequality for this setting. Here we will present a different argument, which
establishes a 2-approximate prophet inequality by way of static item prices. That
is, the seller will choose a price for each item, and offer this menu of prices to each
customer. Each customer, upon arrival, can purchase whichever item they prefer
most at the given prices. The prices will be static, anonymous, and order-oblivious.

What price should be set on item j? Guided by Theorem 5.2, we will focus on
constructing balanced prices for a given value profile v. Write V ∗j for the value
generated by item j in the optimal assignment. That is, if the optimal allocation
assigns item j to buyer i, then V ∗j will be equal to vij . We will then take the (static
and anonymous) price of item j to be pj = V ∗j .

We claim that these prices are (1, 1)-balanced. For the first condition of bal-
ancedness, note that the revenue generated by selling some set S of items is equal
to
∑
j∈S V

∗
j , which is at least the loss in optimal value suffered if those items were

removed from the market. For the second condition, note that if some set S of
items were sold, then the total residual welfare available in the remaining items is
at least

∑
j 6∈S V

∗
j , which is equal to the sum of prices of all the remaining items.

Theorem 5.2 then implies that the static, anonymous prices pj = 1
2 E[V ∗j ] imply

a prophet inequality with approximation factor 2. In other words, in order to
determine the price of item j, we should take the expected contribution of item j
to the optimal welfare, over all value realizations, and divide this by 2.

Example 6.1. Suppose there are two items, {a, b}, and two buyers, {1, 2}. Buyer
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1’s values are deterministic: v1a = 5 and v1b = 6. Buyer 2’s value for item a is
deterministically v2a = 3, but her value for b is stochastic and equally likely to be
either 0 or 10. If v2b = 0, then the optimal assignment gives a to buyer 2 and b to
buyer 1, yielding V ∗a = 3 and V ∗b = 6. If v2b = 10, then the optimal assignment
gives a to buyer 1 and b to buyer 2, leading to V ∗a = 5 and V ∗b = 10. Taking half
the average of each item’s welfare contribution, the pricing scheme above would
post item prices pa = 1

2 ·
3+5
2 = 2 and pb = 1

2 ·
6+10

2 = 4.

Submodular Combinatorial Auctions. The argument above extends directly
to a richer space of combinatorial auctions with submodular valuations. In this
setting there are still multiple items for sale, but now each buyer can purchase
multiple items. We can then think of each xi as an arbitrary subset of the set M
of all items, and the feasibility constraint is that xi ∩ xk = ∅ for any two buyers i
and k. The items exhibit decreasing marginal values for each buyer.

To extend our 2-approximate prophet inequality to this setting, the idea is to
consider the so-called XOS representation of a valuation [Lehmann et al. 2001],
which expresses the valuation function as a maximum over linear functions. This
allows us to define the contribution of an item j to the welfare generated by an
allocation x∗: if j is assigned to buyer i, then V ∗j is simply the weight of j in the
additive function that defines the value vi(x

∗
i ). As in the unit-demand case, pricing

each item j at half of its expected contribution to the social welfare leads to a
2-approximate prophet inequality. We refer the interested reader to [Feldman et al.
2015] for more details.

Multiple Copies of Each Item. In addition to establishing a 2-approximate
prophet inequality for matching markets, [Alaei et al. 2012] showed that the ap-
proximation factor improves to (1−1/

√
k + 3)−1 when there are at least k identical

copies of each item. This directly extends the result of [Alaei 2014] for cardinal-
ity constraints discussed in Section 4.1, yielding the same approximation factor
in a multidimensional setting. This analysis was then extended further by [Alaei
et al. 2013] to obtain a similar approximation factor for the generalized assignment
problem.

6.2 Multiple-Choice Matroid Constraints

When we sketched the argument for the matroid prophet inequality in Section 4.2,
we essentially established that a certain dynamic pricing policy is (1, 1)-balanced.
As it turns out, this argument extends directly to a multi-dimensional version of
the matroid prophet inequality as well. Instead of taking a matroid constraint over
buyers directly, imagine that there is a universe of elements E partitioned into
disjoint subsets E1, . . . , En. The decision maker must allocate to each buyer i a
subset xi ⊆ Ei. The feasibility constraint is defined by a matroid over E, and an
allocation is feasible if and only if ∪ixi is independent according to that matroid.
In other words, there is a matroid feasibility constraint over elements, and multiple
elements can be presented to the optimizer simultaneously. Each elements has an
associated value, and the value of a subset xi is simply the sum of the individual
item values. The proof we sketched in Section 4.2 extends directly to this multi-
dimensional setting, leading again to a prophet inequality with approximation factor
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2 via posted prices. As for single-dimensional matroid constraints, the prices applied
here will be dynamic and personalized, though the approximation is order-oblivious.

Recall that it suffices to define a balanced pricing policy for a fixed valuation
profile v. The pricing policy we use prices each collection of elements at half of the
opportunity cost they impose on the residual value. That is, for each i, if x<i is the
collection of allocations made previously, then the price of some feasible allocation
xi (which, recall, is a subset of Ei) is set to

pi(xi | x<i) =
1

2
(OPT(v | x<i)− OPT(v | x≤i)) .

Note that these prices may not take the form of prices on individual elements, but
rather might be arbitrary bundle prices, as illustrated in the following example.

Example 6.2. Suppose the constraint is that at most 2 elements can be accepted.
In the first round, the optimizer is presented with two elements whose values are
both deterministically 2, and in the second round the optimizer is presented with a
single element whose value is deterministically 10. In this case, the price assigned
to any single element in the first round is 1 (half of 2) but the price assigned to the
pair of both elements is 6 (half of 12, the value of the optimal solution).

As with matching markets, this pricing strategy extends naturally to cases where
the value of agent i for a set of elements xi is not necessarily additive, but can be
an arbitrary submodular valuation over the set of elements selected. This yields a
2-approximate prophet inequality for this setting as well [Dütting et al. 2017].

6.3 Combinatorial Auctions

We next consider a combinatorial auction problem. There are m items for sale
and n buyers. Each buyer i has a valuation function vi that assigns non-negative
value to every subset of at most d items. There is an O(d)-approximate algorithm
for maximizing welfare in the offline version of this problem, and a lower bound
of Ω(d/ log d) assuming P 6= NP [Trevisan 2001]. Our goal is to match this O(d)
approximation with a prophet inequality using posted item prices.

We will again consider the simpler full information case where all valuations are
known in advance. Note that the pricing problem is still non-trivial in the determin-
istic case, and in fact there may not exist prices that lead to the optimal allocation.7

We will construct balanced prices as follows: given valuation profile v, consider the
welfare-maximizing allocation x∗ (which we can assume allocates all items). Then
for each item j, say j ∈ x∗i , set the price of j to pj = vi(x

∗
i )/|x∗i |. These prices

are set so that the total price of all items is precisely OPT(v). At the same time,
prices are high enough that, for any set of goods S, the total price of S is at least
1/d of the value of allocations in the optimal allocation x∗ that intersect S, which
bounds the total loss of welfare if the goods in S were removed. This establishes

7For example, suppose there are three items and four single-minded bidders. The first three
bidders each have value 2 for a different pair of items, and the last bidder has value 3 for the set
of all three items, so at most one bidder can get positive value, and it is optimal to allocate all

items to the last bidder. However, at any item prices where the last bidder is willing to purchase,
one of the other bidders will purchase first. This leads to a 3/2 approximation.
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that these prices are weakly (d, 1)-balanced. Theorem 5.2 then immediately implies
that these prices lead to a prophet inequality with approximation factor 4d.

This argument can be extended to a broader class of MPH combinatorial auc-
tions, which restricts the extent of complementarities between items in the prefer-
ences of any buyer [Feige et al. 2015]. It turns out that a natural extension of the
price scheme described above is weakly (d, 1)-balanced for MPH-d combinatorial
auctions, leading again to a price-based prophet inequality with an O(d) approxi-
mation factor, using static and anonymous item prices.

6.4 Discussion: Computation

The arguments above establish existential prophet inequalities. But in these inher-
ently combinatorial settings, we must consider whether the appropriate prices can
be computed. There are two barriers here. First, it is necessary to compute the
required balanced prices for any given fixed valuation. Second, it is necessary to
take expectations with respect to the distribution over all valuation profiles. For
the second issue, it is helpful that the welfare implication of balanced prices is in-
herently robust as discussed in Section 3: perturbing prices by some small amount
ε will in turn degrade the welfare guarantee by a small amount. It is therefore
possible to estimate the necessary prices by sampling a polynomial number of value
profiles, computing balanced prices for each, and using the average of the prices
computed.

The first issue is more fundamental. In each of the pricing schemes described
above, the first step is to find an optimal allocation; this is then transformed into
appropriate prices by “dividing” the welfare among the individual elements. This
approach is inherently intractable when the allocation problem is NP-hard. One
way to approach this issue is to base prices instead on an approximately optimal
allocation, as we did for the knapsack prophet inequality. It turns out that this is
consistent with the balanced-price approach; it simply degrades the final approxi-
mation factor of the prophet inequality by the approximation factor of the allocation
algorithm being used. This approach was used to construct an O(1)-approximate
prophet inequality for submodular combinatorial auctions, and an O(d2) approxi-
mation for combinatorial auctions with set size d [Feldman et al. 2015].

A different approach is to consider instead a fractional relaxation of the allocation
problem, which can be solved exactly in polynomial time. Many of the pricing
schemes discussed so far extend naturally to fractional allocations as well, leading to
balanced prices for those relaxed problems. The result is a prophet inequality, based
on posted prices, that applies when buyers are allowed to make fractional purchases.
A natural thought, then, is to simply keep the same prices, but remove all fractional
allocations from the menu. In other words, use the fractional version of the problem
to compute prices, then use those prices as a solution to the original, integral
problem. As it turns out, for some problems this restriction does not degrade the
approximation factor at all! When this works, we end up with a prophet inequality
with the same approximation factor we would have enjoyed if we could have solved
the original (NP-hard) problem exactly. This approach has been used to construct
a 2-approximate prophet inequality for submodular combinatorial auctions, and an
O(d) approximation for combinatorial auctions with set size d [Dütting et al. 2017].
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7. MECHANISM DESIGN IMPLICATIONS

Having now built up a portfolio of prophet inequalities, we can consider their im-
plications for mechanism design. Each of the prophet inequalities described above
can be implemented as a sequential posted-price mechanism that is ex post in-
dividually rational and incentive compatible in dominant strategies. This yields,
in particular, a 2-approximate truthful mechanism for submodular combinatorial
auctions, an O(d)-approximate truthful mechanism for combinatorial auctions with
maximum allocation size d, and others. Importantly, these mechanisms assume a
Bayesian setting, and their performance guarantees hold in expectation over the
realized buyer preferences. They calculate prices using agent value distributions,
and therefore require some degree of market knowledge. However, this dependence
affects only the welfare guarantees, rather than the incentive properties, and (as
discussed in Section 3) the price computation can be made robust to errors.

Let’s compare these posted-price mechanisms to the literature on simple auc-
tions, which are not incentive compatible but have good performance guarantees
at equilibrium. For example, a natural mechanism for combinatorial auctions (and
submodular combinatorial auctions) is the simultaneous item auction, where each
item is sold separately but simultaneously in a sealed bid auction, and the winner
of each item pays their bid for it. Bayes-Nash equilibria of this auction format have
worst-case performance guarantees that are similar to the prophet inequalities es-
tablished above [Christodoulou et al. 2016; Syrgkanis and Tardos 2013; Feige et al.
2015]. Moreover, this auction format can be implemented without any prior knowl-
edge of agent preferences. That said, simultaneous item auctions offload the prob-
lem of actually finding an equilibrium (and forming beliefs about the preferences of
others) to the bidders, and this is known to present computational challenges [Cai
and Papadimitriou 2014]. In contrast, a posted-price mechanism pushes the com-
putational heavy lifting to the price designer, and as we’ve seen this (approximate)
price-selecting task is computationally tractable for a variety of interesting settings.

Revenue Maximization. To this point, I have discussed the mechanism design
implications of prophet inequalities exclusively with respect to welfare maximiza-
tion. As it turns out, prophet inequalities also inform the design of posted prices for
approximate revenue maximization. While a comprehensive treatment of Bayesian
(revenue) optimal mechanism design is beyond the scope of this survey, it would be
remiss of me not to provide at least a high-level overview of this line of literature. I
recommend [Hartline 2013] for an overview of the concepts from Bayesian optimal
mechanism design used below.

For single-parameter settings, such as those covered in Section 4, the connection
to revenue maximization makes use of Myerson’s theorem that equates expected
revenue with virtual value [Myerson 1981]. Roughly speaking, for each buyer i
we can define a virtual value function that depends on Di, the distribution over
agent i’s value, and maps each value to a (possibly negative) virtual value. A
standard result in Bayesian mechanism design equates the revenue of a mechanism
with its expected virtual welfare. One can therefore approximate the revenue of the
optimal mechanism by applying the prophet inequality policy to the virtual values,
rather than the original values. E.g., for a single item, one could accept the first
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prize whose virtual value is greater than half the expected maximum virtual value.8

This yields an order-oblivious posted-price mechanism, albeit one with potentially
personalized prices. We refer the interested reader to [Chawla et al. 2010] for more
details on this approach. An interesting question is how well one can approximate
the optimal revenue using an anonymous price, rather than personalized prices;
[Alaei et al. 2015] show that an e-approximation is possible using a single posted
price, under a standard regularity assumption on the value distributions.

Myerson’s characterization does not hold in general multi-dimensional settings,
so this direct application of prophet inequalities to revenue maximization does not
apply. However, there have been significant advances in applications of prophet
inequalities to specific revenue-maximization problems. One of the first such inno-
vations was an approximately revenue-optimal sequential posted-price mechanism
for matching markets, under an additional assumption that each agent’s values for
the items are independent of each other [Chawla et al. 2007; Chawla et al. 2010].
This work provides a direct argument that bounds the optimal revenue in the unit-
demand case by the optimal revenue of a related single-parameter problem. Among
other techniques, [Chawla et al. 2010] show how to invoke the prophet inequality,
using virtual values in the related single-parameter problem, to obtain an approx-
imation result for revenue. Similar techniques have been used to extend beyond
the unit-demand case to scenarios with, e.g., matroid constraints [Kleinberg and
Weinberg 2012], under the assumption of independent values across items.

More recently, a line of work in algorithmic mechanism design has extended the
connection between virtual welfare and revenue for multi-dimensional problems.
These connections interpret virtual values in the context of marginal revenue and
dual solutions in an associated allocation program [Alaei et al. 2013; Cai et al. 2013;
Cai et al. 2016]. This has led to improved upper bounds on the optimal revenue
in multi-item mechanism design problems, opening the door for approximation
results and the application of multi-dimensional prophet inequalities to revenue
maximization. This line of inquiry is very nascent at the time of this survey,
but has been used to generate constant approximations to the optimal revenue,
using posted prices, in broader classes of multi-item problems. In particular, [Cai
and Zhao 2017] establish the existence of sequential posted price mechanisms that
O(1)-approximate the optimal revenue in submodular combinatorial auctions (and
others), under an independence assumption across items. These advances appear
to mark the beginning of an exciting direction for future study.

8. CONCLUSIONS AND FUTURE DIRECTIONS

In this survey, I described a simple economically-motivated proof of the prophet
inequality. As I hope to have convinced you, this form of argument is convenient
for establishing prophet inequalities for broad classes of combinatorial markets,
and thereby build simple, incentive compatible posted-price mechanisms for various
resource allocation problems. A natural direction to pursue is to try to apply this
technique to other allocation problems. For example: scheduling traffic in a fixed

8This brief description omits a step known as ironing, which is necessary when virtual value func-

tions are non-monotone; for a more thorough treatment of such issues we again suggest [Hartline
2013]
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network, assigning cloud resources to computing jobs, combinatorial auctions with
subadditive valuations, and others. In particular, recalling the connection with
smoothness discussed in Section 5, settings for which price of anarchy bounds are
known (e.g., subadditive combinatorial auctions [Feldman et al. 2013]) seem like
promising candidates for new price-based prophet inequalities.

Some of the prophet inequalities described here are established using static,
anonymous item prices. These are all desirable properties, for various reasons.
Other results use more general pricing schemes that are dynamic, personalized,
and/or price bundles rather than individual items. For what problems is this extra
power necessary? For a given problem of interest, what is the gap in approximation
power between, for example, static and dynamic pricing schemes?

All of the results considered here assume that the designer wishes to maximize
the sum of rewards gained over the rounds. One might instead consider other ways
of aggregating the prizes selected. For example, [Assaf and Samuel-Cahn 2000]
established a variant of the original prophet inequality where the goal was to select
up to k prizes that maximize the best of the k prizes chosen. Relatedly, [Rubinstein
and Singla 2017] consider a prophet inequality over a matroid constraint where a
single item can be selected (or not) each round, and the goal is to maximize a
submodular (or subadditive) objective function over the set of items chosen. To
what extent can this be extended to other feasibility constraints, or broader classes
of aggregation functions?

For some of the problems discussed, the achievable approximation factor improves
as markets grow large, in the sense of having multiple copies of items (or, more
generally, needing to accept multiple prizes before any one prize becomes infeasible).
Both the original prophet inequality and the matching-market prophet inequality
have approximation factors tending to 1 as the number of copies of each item grows.
Is there a sense in which this generalizes to broader classes of allocation problems,
such as combinatorial auctions? In many cases, in the continuous large-market
limit, aggregate market uncertainty is eliminated entirely and the pricing exercise
reduces to the computation of market equilibrium prices. This question therefore
has the most bite in large-but-finite markets, where a primary concern is the rate
of convergence to efficient outcomes.

We’ve seen that in many instances, appropriate prices can be computed efficiently
by sampling instances of the market, finding balanced prices, and then averaging
over these prices. This assumes the ability to sample from the distribution over mar-
ket instances. Can we instead learn prices efficiently through more natural feedback
mechanisms, such as the revealed preference from buyer purchasing decisions? Is
there a sense in which natural (or, at least, local) price-adjustment methods con-
verge robustly to approximately balanced (or otherwise “good”) prices in the face
of market uncertainty, avoiding the cycling behavior of traditional tâtonnement in
the absence of market equilibria?
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