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We study the communication complexity of incentive compatible auction-protocols between a mo-
nopolist seller and a single buyer with a combinatorial valuation function over n items [Rubinstein

and Zhao 2021]. Motivated by the fact that revenue-optimal auctions are randomized [Thanas-

soulis 2004; Manelli and Vincent 2010; Briest et al. 2010; Pavlov 2011; Hart and Reny 2015] (as
well as by an open problem of Babaioff, Gonczarowski, and Nisan [Babaioff et al. 2017]), we focus

on the randomized communication complexity of this problem (in contrast to most prior work on

deterministic communication).
We design simple, incentive compatible, and revenue-optimal auction-protocols whose expected

communication complexity is much (in fact infinitely) more efficient than their deterministic coun-
terparts.

We also give nearly matching lower bounds on the expected communication complexity of

approximately-revenue-optimal auctions. These results follow from a simple characterization of
incentive compatible auction-protocols that allows us to prove lower bounds against randomized

auction-protocols. In particular, our lower bounds give the first approximation-resistant, exponen-

tial separation between communication complexity of incentivizing vs implementing a Bayesian
incentive compatible social choice rule, settling an open question of Fadel and Segal [Fadel and

Segal 2009].
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1. INTRODUCTION

The central goal of Algorithmic Mechanism Design is to design mechanisms that
guarantee good outcomes while taking into account both (i) the selfish agents’
incentives and (ii) the ever-increasing complexity of modern applications. A funda-
mental question to this field is whether simultaneously satisfying both the incentive
and simplicity constraints is harder than satisfying each of them separately.
In this paper we focus on one of the simplest and most-studied settings in the

field: a monopolist, Bayesian, revenue-maximizing seller auctioning n items to a
single risk-neutral buyer. An active line of work over the past two decades argues
that even in this strategically-simple setting, and even for buyers with additive
or unit-demand valuations, optimal mechanisms are inherently complex, e.g. they
involve randomized lotteries [Thanassoulis 2004; Manelli and Vincent 2010; Briest
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et al. 2010; Pavlov 2011; Hart and Reny 2015] and are often computationally in-
tractable [Daskalakis et al. 2014; Chen et al. 2014; Chen et al. 2015].

One particularly influential measure of complexity of mechanisms is themenu-size
complexity of [Hart and Nisan 2019]: by the taxation principle, a general incentive
compatible mechanism can be canonically represented as a menu, where each line
or option in the menu corresponds to a (possibly randomized) allocation and a
payment. The menu-size complexity of a mechanism is then the number of lines
in the corresponding menu. Perhaps the single most convincing evidence for the
complexity of optimal mechanisms is an example due to [Daskalakis et al. 2017],
where the optimal mechanism for an additive buyer with two i.i.d. item valuations
from a seemingly benign distribution (Beta(1, 2)) requires an infinite and even un-
countable menu-size complexity. We henceforth refer to this powerful example as
the DDT example.
[Daskalakis et al. 2017] and related complexity results for revenue-maximizing

auctions have inspired fruitful lines of work that circumvent these barriers, e.g. by
designing sub-optimal but simple mechanisms that approximate the optimal rev-
enue (see discussion of Related work in [Rubinstein and Zhao 2021]).
It is not a-priori clear, however, that the menu-size complexity by itself is an

obstacle to using optimal mechanisms. For instance, the seller in the DDT exam-
ple could in principle succinctly describe her1 mechanism as “the-optimal-auction-
for-Beta(1, 2) × Beta(1, 2)” and even point the buyer to an explicit description in
[Daskalakis et al. 2017]. However, [Babaioff et al. 2017] recently observed that, once
the mechanism is announced, the deterministic communication complexity to im-
plement it is equal (up to rounding) to the logarithm of the menu-size complexity.
In the DDT example, for the buyer to deterministically specify his favorite line in
the uncountable menu, he would need to send an infinite stream of bits. [Babaioff
et al. 2017] left open the question of randomized communication complexity of
optimal mechanisms. Indeed randomized communication is a natural complexity
measure in this case since we already consider randomized allocations2.

In our paper [Rubinstein and Zhao 2021], inspired by [Babaioff et al. 2017]’s open
question, we formulate a notion of an incentive compatible (IC) auction protocol,
which is a two-party (possibly randomized) interactive communication protocol
between a seller and a buyer with an allocation and payment associated with every
transcript of the protocol. Before presenting our results in this model, below we
briefly discuss our modeling assumptions.

1.1 Brief Discussion of Modeling Assumptions

Per the discussion above, we assume that the protocol and auction format are
public information. The buyer privately knows his true type (or valuations of
items/bundles).
We mostly focus on the total expected communication complexity of the protocol.

1Throughout this note, we use feminine pronouns for the seller and masculine for the buyer.
2Different applications have different simplicity desiderata. (E.g. highly regulated FCC auctions vs

very fast ad auctions with automated bidders vs smart contracts that require costly documentation
of transaction details on a blockchain.) Ultimately, there is no universal “right” measures of

complexity, and studying a variety gives us a more complete understanding.
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For our protocols, we bound the interim expectation, i.e. for every buyer’s type,
the communication complexity of the protocol is bounded, in expectation3 over
the protocol’s randomness. Our lower bounds hold even for ex ante expectation,
i.e. even if we allowed that some buyers may know in advance that they are expected
to participate in a prohibitively long protocol.
Consistent with essentially all prior work on this problem, the seller in our model

has no private information and is not strategic. At the end of the communication
protocol she must know the allocation and payment.
We model the buyer’s strategic aspect as a complete information single-player

extensive-form game with buyer’s nodes and nodes of Chance; each leaf is asso-
ciated with an allocation and a payment. In practice, nodes of Chance could be
implemented by a trusted seller (e.g. when the seller is an auditable firm), a trusted
intermediary, a cryptographic protocol for coin tossing, or a publicly observable,
renewable external source of randomness.
As is common in the aforementioned literature on randomized mechanisms, we

assume that the buyer is risk-neutral. In particular, we require that the protocol
is interim individually rational (IR). In direct revelation mechanisms, it is possible
to transform interim to ex-post individual rationality by correlating the payment
with the randomized allocation. Similarly, at the cost of a bounded increase in
the communication complexity, it is possible to transform our protocols to become
ex-post approximately individually rational.
While we make little restrictions on buyer valuations, we do generally assume that

the buyer’s valuation is capped at some arbitrarily large value U . The complexity
of our protocols does not depend on U , e.g. U can be all the money in the universe
(typically much smaller).

2. OUR RESULTS

2.1 Communication-Efficient IC Auction Protocols

We design IC auction protocols that are simple, surprisingly efficient, and are exactly
revenue-optimal. For instance, we give a revenue-optimal IC auction protocol for
the DDT example where the buyer sends less than two bits in expectation. (In
contrast, for a deterministic auction selling two items separately, merely specifying
the allocation requires the buyer to send two bits!)

Main positive result. Our main positive result is a generic transformation of an
arbitrary (revenue-optimal or otherwise) IC and IR mechanism for additive, unit-
demand, or general combinatorial valuations to an IC auction protocol that uses
O(n log(n)), O(n log(n)), O(2nn) bits in expectation respectively. We note that our
protocols work for correlated prior distributions, and even for non-monotone and
negative valuations4.

Theorem 2.1. For any prior D of Buyer’s (additive/unit-demand/combinatorial)
valuations over n items bounded by maximum value U , and any IC mechanism M,

3In expectation vs high probability: We remark that by Markov’s inequality in expectation upper
bounds on the communication complexity imply similar upper bounds w.h.p.
4We assume for simplicity that all payments are non-negative.
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there is an IC auction protocol with the same expected payment and allocation, using
(O(n log n)/O(n log n)/O(2nn)) bits of communication in expectation.

Trading off revenue for even better communication efficiency. We obtain an ex-
ponentially more efficient protocol for the special case of unit-demand with inde-
pendent items5. Specifically, at the cost of an ε-fraction loss in revenue, we obtain
an IC auction protocol that uses only polylog(n) communication.

Theorem 2.2. Let D be a distribution of independent unit-demand valuations
over n items bounded by maximum value U . Then, for any constant ε > 0, there is
a (1 − ε)-approximately revenue-optimal IC auction protocol using polylog(n) bits
of communication in expectation.

Exhibiting the richness of our IC auction protocol model, this protocol is substan-
tially different from the generic transformation in our main result, and builds on
the recent symmetric menu-size complexity of [Kothari et al. 2019].

Remark 2.3. For simplicity of presentation we focus on the expected communi-
cation complexity. Here we briefly remark that our protocols also have desirable
properties in terms of round- and random-coin-complexities. For round complexity,
our protocols use O(log(n)) rounds in expectation (O(n) for general combinatorial
valuations). Using trivial batching, one can further compress the number of rounds:
at the cost of a constant factor increase in the communication complexity, our pro-
tocols can be compressed to 1+ ε rounds in expectation. In terms of random coins,
our protocols can be implemented with O(log(n)) coins in expectation (O(n) for
general combinatorial valuations).

2.2 Communication Complexity Lower Bounds

We show that beyond the (important) special case covered by Theorem 2.2, the
communication complexity of our protocols is almost the best possible, in the fol-
lowing strong sense:

Theorem 2.4. For revenue maximization with n items, any incentive compatible
auction protocol that achieves any constant factor approximation of the optimal
revenue must use at least6:

—Ω(n) communication for unit-demand valuations7;

—2Ω(n1/3) communication for gross substitutes valuations;

—2Ω(n) for XOS valuations.

Furthermore, any incentive compatible auction protocol that obtains more than
(80%/91%) of the optimal revenue must use at least:

5A valuation v : {0, 1}n → R≥0 is unit-demand if for all S ⊆ [n], v(S) = maxi∈S v({i}). We say

a prior distribution of unit-demand valuations has independent items if for each i ∈ [n], v({i}) is

sampled independently from an arbitrary distribution supported on R≥0.
6To be more precise, in general, an auction protocol takes a prior distribution as input and then

specifies how the buyer and the seller communicate with each other given their valuations, and our
theorem states that for each specified valuation class, there exists a prior distribution such that any
constant-approximate auction protocol requires certain amount of randomized communication.
7additive, unit-demand ⊂ gross-substitutes ⊂ submodular ⊂ XOS ⊂ subadditive..
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—2Ω(n) communication for (XOS/submodular) valuations over independent items.

To place the result for independent items in the greater context of Algorithmic
Mechanism Design, contrast it with simple-but-approximately-optimal mechanism
independent subadditive valuations: [Rubinstein and Weinberg 2018] showed that a
constant fraction of revenue can be guaranteed by simple mechanisms; this constant
has been improved in followup works [Cai et al. 2016; Chawla and Miller 2016; Cai
and Zhao 2017], but no non-trivial upper bound on the best approximation factor
were known. Assuming that efficient randomized communication is a necessary
desideratum for “simple mechanism”, our result for independent items implies that
the optimal approximation factor is bounded away from 1 – even for the special
case of submodular valuations.
Note also that our upper and lower bounds for correlated valuations are nearly

tight in the following ways:

—For unit-demand and combinatorial valuations, our upper and lower bounds
nearly match (up to logarithmic factors), even though the lower bounds hold
for arbitrary (constant) approximation factor vs exactly revenue-optimal in upper
bounds. Furthermore the combinatorial upper bound holds for arbitrary combi-
natorial valuations, which are much more general than XOS valuations used in
the lower bound.

—The correlation in our unit-demand lower bound is necessary by Theorem 2.2.

We remark that for one interesting case an exponential gap remains:

Open Question 2.5. What is the randomized communication complexity of ex-
actly revenue optimal IC auction protocols for unit demand valuations over inde-
pendent items?

Our lower bound for unit-demand requires correlated items (and this is an inher-
ent limitation of our technique). On the other hand, our protocol for unit-demand
with independent items (Theorem 2.2) does not guarantee exact revenue optimality.

2.3 Separating the Complexity of Implementing and Incentivizing

Our results also have implications for a question of Fadel and Segal [Fadel and
Segal 2009]. They study, for any fixed social choice rule, the communication cost
of selfishness, i.e. the difference in communication complexity between (i) imple-
menting it, and (ii) implementing it in a Bayesian incentive compatible protocol.
They give examples where the communication cost of selfishness is exponential, but
those examples are very brittle in the sense that they rely on agents’ utilities to
have unbounded (or at least exponential) precision. They ask whether the com-
munication cost of selfishness on any (possibly contrived) social choice rule can be
reduced substantially if agents’ utilities have a bounded precision [Fadel and Segal
2009, Open Question 3]. The source of hardness of our lower bounds is inherently
different from the instances in [Fadel and Segal 2009]: we harness the combina-
torial structure of the valuations rather than exploiting the long representation of
high-precision numbers.

In more detail, in our constructions the buyer’s utility only requires constant
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precision8 for any outcome (and the seller is not strategic, i.e. she has constant
utility zero). Furthermore, for our hard instances of unit-demand valuations, we
show that the exactly revenue-optimal IC mechanism can be implemented by a
randomized (non-IC) protocol using O(log(n)) communication even in the worst
case, hence resolving [Fadel and Segal 2009]’s open question on the negative9. We
remark that by [Fadel and Segal 2009, Corollary 3], this exponential separation is
tight.

Corollary 2.6. There exists a randomized protocol for a revenue maximization
instance, in which the buyer’s valuation has constant precision, such that there is an
exponential separation between the communication complexity of its approximately
Bayesian IC implementation and that of its non-IC implementation.

Remark 2.7 Separations for deterministic vs randomized protocols.
Formally, [Fadel and Segal 2009] phrase their open question for deterministic

protocols. To view Corollary 2.6 in this context, note that in our model the seller is
not strategic; hence one can consider an equivalent deterministic social choice rule in
a slightly different setting where the random seed (only O(log(n) bits are necessary)
to the revenue-optimal auction is replaced by a seller’s type. The requirements from
the protocol in this setting is only stricter, so the communication lower bound on
IC auction protocols trivially extends. On the other hand, for the non-IC auction
protocol the seller can just send the buyer her type (aka the random seed).

Interestingly, this separation between the communication complexity of imple-
menting and incentivizing optimal auctions holds in a more general sense (albeit
for expected communication in randomized protocols): In appendix of [Rubinstein
and Zhao 2021], we show a non-IC auction protocol that for any buyer with unit-
demand (resp. combinatorial) valuations, the exactly optimal IC mechanism can
be implemented by a randomized (non-IC) protocol using O(log(n)) (resp. O(n))
communication.

3. TECHNICAL HIGHLIGHTS

In this section, we give an overview of some highlights of our techniques for estab-
lishing our efficient protocols and nearly tight lower bounds.

3.1 Infinitely More Efficient Auction Protocols

Abstracting away the game theory and other detail, we explain the simple idea
which is at the core of our main positive result (Theorems 2.1 and 2.2). Simplifying
further, consider a randomized auction of just a single item: our goal is to compress
the infinite deterministic communication complexity of a protocol where the buyer
tells the seller exactly with what probability he expects to receive the item. Denote
this probability of allocation by p. Given p, one way to allocate with probability p

8We require constant precision marginal contribution per item. For unit-demand, this translates

to constant precision for any outcome. For gross substitutes, etc. this translates to O(log(n)) bits

to represent outcome utilities, which is still negligible.
9Note that it was an open question to obtain such a separation for any social choice rule, let alone

a natural and important one like revenue-maximizing auctions.
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using unbiased coin tosses10 is to generate a uniformly random number τ ∈ [0, 1]
(whose binary representation is a uniformly random stream of bits after the decimal
point), and to allocate the item iff p > τ .

The key insight: for any fixed p, we don’t actually need to know τ to infinite
precision - we only need to know the prefix of τ ’s binary representation until the
first bit on which it differs from p. Similarly, for a fixed τ , we only need to know
p to the same precision. So here is our core protocol: draw11 τ ∈ [0, 1] uniformly
at random, and ask the buyer to stream the binary representation of p - only with
enough precision to determine whether p > τ . Each time the buyer sends a bit
from the binary representation of p it differs from the corresponding bit of τ with
probability 1/2; i.e. the protocol terminates with probability 1/2 after each round.
Hence we reduced the infinite deterministic protocol to one where the buyer only
sends 2 bits in expectation.
What happens when we bring back incentives? It’s not too hard to show that the

protocol remains incentive-compatible as long as the buyer doesn’t learn anything
about τ until the end of the protocol. This is actually too good to be true, since
the protocol length must depend on τ (otherwise it would be deterministic - and
hence infinite), and the buyer must know whether the protocol is continuing in
order to participate. Fortunately we can argue that if the only thing the buyer
learns about τ is that the protocol is continuing, this information cannot help him
cheat. Intuitively, he has already committed to the prefix of the protocol, and
the extension of his strategy for the rest of the protocol is optimal conditioned on
actually being asked to use it.

3.2 A Characterization of Randomized IC Auction Protocols

It is natural to try to prove communication lower bounds of IC auction protocols via
a modular approach of: (i) use Game Theory to define a restricted communication
problem that we have to solve in order to obtain near-optimal revenue; and then (ii)
use standard techniques from Communication Complexity (e.g. a reduction from
Set Disjointness). This approach has worked successfully in other applications of
communication complexity to game theory (e.g. [Papadimitriou et al. 2008; Dobzin-
ski 2016; Immorlica et al. 2018; Göös and Rubinstein 2018]). However, our non-IC
auction protocol in appendix of [Rubinstein and Zhao 2021] formally precludes such
a modular approach because there is an efficient communication protocol that ex-
actly solves the game theoretic problem we are after. (In other words, the modular
approach cannot separate the communication complexity of incentivizing and im-
plementing a social choice rule.) Instead we need to simultaneously consider the
complexity and incentives constraints, in particular we need to consider the joint
evolution of the buyer’s prior and incentives in an arbitrary randomized protocol.
Our main novel insight is the following simple characterization of incentive com-

patible communication protocols: In a general communication protocol, each buyer’s
node can partition the buyer’s types in an arbitrary way. But for IC protocols, the
buyer’s next bit is fully determined by his respective value for the expected alloca-

10For historical context, we remark that the setup up to this point is similar to the 1-bit public-coin
protocol for single-item auctions in [Babaioff et al. 2017].
11τ can be drawn on the fly so the expected number of random bits is also bounded.
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tions conditioned on sending “0” or “1”; this means that it can only partition the
buyer’s types into halfspaces in valuation space. In contrast, an non-IC protocol
can make an arbitrary partition of the valuation space into two disjoint sets. Thus
IC mechanisms are much less expressive.

The second part of the proof combines tools from Auction Theory and Error
Correction Codes to construct, for each class of valuations, a family of priors whose
(approximately) optimal mechanisms are all different. Finally, a simple counting
argument shows that the total number of short IC protocols that satisfy our char-
acterization is too small to cover all the different mechanisms.
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