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Editors' Introduction

IRENE LO

Stanford University

and

INBAL TALGAM-COHEN

Technion { Israel Institute of Technology

This summer issue of SIGecom Exchanges begins with coverage of the ®idm
Winter Meeting through a series of interviews with some of the exckent invited
speakers. It then includes a survey, three research letters, anthree annotated
reading lists. It ends with a puzzle in honor of Noam Nisan's 60th birthday

We hope many of our readers had a chance to attend the second SIGecom Winte
Meeting that took place virtually in January 2022 on the topic of fairness (broadly
construed). In this issue, we invite three leading graduate studets, Emily Diana,
Mingzi Niu and Georgy Noarov, to present the highlights of the event. The sudents
recap the reside chat between Cynthia Dwork and Sendhil Mullainathan, and
proceed with a series of interviews with some of the top researchemwho spoke at
the meeting: Annie Liang, Ariel Procaccia, Hoda Heidari, Ashesh Rambachan, ash
Aislinn Bohren. The interviews give a new perspective on the evenas well as the
topic of fairness in general, and also touch upon how to come up with probhas,
the grad school experience, and what counts as a good paper.

Haris Aziz, Bo Li, Hene Moulin and Xiaowei Wu authored a comprehensive
survey on algorithmic fair allocation of indivisible items. Their survey highlights
common techniques in the design of (approximation) algorithms for alloation, and
nicely complements Warut Suksompong's survey in our last winter isge on fair
division under constraints.

A letter from George Christodoulou, Elias Koutsoupias and Annamaria Kovacs
presents their recent FOCS'21 breakthrough towards con rming thefamous Nisan-
Ronen conjecture. Hoda Heidari, Solon Barocas, Jon Kleinberg and Karen Lev
describe in their letter their model for comparison among di erent allocation poli-
cies, which focuses on human perceptions of the probability distbutions induced
by these policies. This work was selected as the Exemplary Paper of ¢hApplied
Modeling Track at EC'21. Manolis Zampetakis, winner of the 2020 ACM SIGecom
Doctoral Dissertation Award, surveys his exciting recent work on leaning from data
under systematic bias, where the bias is due to either truncation oiself-selection.

For readers wondering which cutting-edge research area to educate ¢mselves
on this summer, this issue includes a selection of three annotatedeading lists.
Faidra Monachou and Ana-Andreea Stoica o er a comprehensive list of resowes
on fairness and equity in both resource allocation and decision-making. i§al Oren
compiles for the community a list of works on cognitive biases in economg&and
computation. The nal list, by Yuan Yuan and Tracy Xiao Liu, focuses on onlin e

Author's address: ilo@stanford.edu , italgam@cs.technion.ac.il
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2 I. Lo and I. Talgam-Cohen

eld experiments, following the tutorial on Experimental Design led by Liu at
WINE'21.

This issue ends with a puzzle by Vincent Conitzer on the communicabn com-
plexity of planning a workshop { speci cally, one celebrating Noam Nisan's 60th
birthday!

We would like to take this opportunity to thank S. Matthew Weinberg f or his
outstanding service to our community as co-editor-in-chief of SIGeeam Exchanges
since 2019. We also extend thanks to Yannai Gonczarowski for his continughhelp
in putting together the issues of Exchanges. As always, please do not bigate to
reach out to us if you would like to volunteer a letter, survey, annotated reading list
or position paper. We hope you nd the research showcased in this issu@aspiring!
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SIGecom Winter Meeting 2022 Highlights

EMILY DIANA

University of Pennsylvania
and

MINGZI NIU

Rice University

and

GEORGY NOAROV
University of Pennsylvania

Emily Diana is a rising fth year Ph.D. student in Statistics and Data Sci-
ence at the Wharton School, University of Pennsylvania, where she iadvised by
Michael Kearns and Aaron Roth. Her research focuses on the intersectioof ethical
algorithm design and socially aware machine learning, and she is hored to have
been recognized as both a Rising Star in EECS by MIT and a Future laeler in Data
Science by the University of Michigan. Before Penn, she received a B.A. id\pplied
Mathematics from Yale and an M.S. in Statistics from Stanford, and she spent two
years as a software developer at Lawrence Livermore National Labadiary.

Mingzi Niu is a rising fth year Ph.D. student in Economics at Rice University ,
where she is advised by Mallesh Pai and Hslya Eraslan. Her researcimterest are
primarily in microeconomic theory, with a focus on mechanism demgn, information
theory and behavioral economics. Before Rice, she received a B.A. iRinance and
Banking and a B.S. in Mathematics and Statistics at Peking University and a M.A.
in Economics at Duke University.

Georgy Noarov is a rising third year PhD student in Computer and Information
Science at the University of Pennsylvania, advised by Michael Kearns a@anhAaron
Roth. Previously, he graduated from Princeton University with a BA. in Mathe-
matics. His research interests span across the elds of uncertainty canti cation,
online learning, fairness in machine learning, and algorithmic game theory.

The Second Annual ACM SlIGecom Winter Meeting took place virtually on
February 23, 2022. Organized by Mallesh Pai and Aaron Roth, it brought together
researchers from economics and computation and adjacent communities todus on
the the topic of Fairness (broadly construed). The 2022 Winter Meetingfeatured
tutorials and invited speakers spanning many disciplines, as well aa reside chat
and other social activities. We present some highlights from the even including
a recap of the reside chat with Cynthia Dwork and Sendhil Mullainath an, and
interviews we conducted with invited speakers.

ACM SIGecom Exchanges, Vol. 20, No. 1, July 2022, Pages 3{23



4 E. Diana et al.

Recap of the Fireside Chat with Cynthia Dwork and Sendhil Mualdghan

One of the highlights of the 2022 Winter Meeting was the Fireside Chat, a30-
minute long Q&A session with Cynthia Dwork (Harvard) and Sendhil Mul lainathan
(UChicago). Both panelists are renowned scholars and authors of seminal rearch
on Fairness in ML. The Fireside Chat was an exciting part of this workshop giving
food for thought to both young researchers and seasoned scientists stiing to enter
the eld of algorithmic fairness. Here are edited excerpts from seveal questions
that the panelists shared their wisdom on.

Fair ML theory experts often face the criticism that mathematical

fairness research is reductionist and too narrowly focused. As a r esult,
some may argue that it brushes aside real-world structural issues of
injustice that do not have straightforward technical solutions. Is th is a

fair criticism?

Mullainathan.  Mathematical fairness researchers think like philosophers. They
seek to design a language and framework for discussing and engaging with faiss
issues. Mathematics simply extends this philosophical mindset Y allowing us to
make our statements even more formal and precise. Both theorists and ploisophers
approach fairness issues broadly, just like humanists would. They sech the space
of possible de nitions and notions of fairness and investigate their inerrelationships.
In parallel, they constantly perform reality checks on these de nitions and look for
missing pieces that could be added to the theory. Indeed, any singl@aper on
fairness will typically only look at a speci ¢c and narrow aspect of fairness | but
together, these papers form a broad and diverse body of research, whose goahd
breadth are fundamentally in line with what humanists attempt to do.

Dwork. Mathematical fairness research is essential for the eld's future sccess.
This is analogous to how mathematics has revolutionized the eld of crypbgraphy:
mathematically formal cryptographic protocols and schemes have been strumental
in enabling engineers to build powerful and scalable code for comptecryptosys-
tems. This process of making cryptography rigorous has been taking placsince
World War |1, and has helped us formally reason about crucial questions sut as:
What exact security guarantees are we trying to achieve? How powerfuls the
adversary we are defending against? Clearly, modern-day cryptographbisoftware
would not have been possible without rst attaining this high level of mathematical
clarity and precision. Similarly, the eld of algorithmic fairness is currently going
through the cycle of proposing new mathematical de nitions, augmentingthem,
and proposing new ones. In this manner, we are following a clear path of pgress
providing an indispensable foundation for concrete, in particular safivare-based,
future fairness solutions.

Over the last few decades, many predictive models have become cen tral
ingredients of automated decision-making tools used by governments an d
businesses. When deployed in areas such as hiring, lending and law en-
forcement, the decisions made by these models directly impact pe ople's
lives, potentially in negative ways. For instance, neural network-b ased
facial recognition tools are widely used in law enforcement to identi fy
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SIGecom Winter Meeting 2022 Highlights 5

criminals, but they are known to be prone to having baked-in racial
biases. Can a researcher developing an ML model predict and forestal I
any future long-term fairness-related risks that the model may pose once
deployed?

Dwork. The only, and indispensable, way of identifying and preventing fuure
fairness issues with a model is to take time before deploying it ahspeak seriously
with lots and lots of dierent groups. This will help you see how what you are
doing is received and whether it is perceived as appropriate or inapmpriate. This
guestion also directly links to the issue of responsibly scaling Asolutions, which is
something that tech companies | including behemoths such as Meta and Google
| have been increasingly grappling with.

Mullainathan.  Our aim should not be to develop extreme degrees of foresight
into such future issues. Rather, we should identify fairness as in Al models by
exercising vigilance. Often, in uential Al models can in a matter of 5-10 years
become impactful beyond all our initial expectations | and just as they t urn out
to be unexpectedly powerful, they may become dangerous in variousnexpected
ways. As a result, we cannot hope to reliably predict fairness-relatd fallouts | but
we can continually monitor the situation to identify any emergent fairn ess risks.

Can you identify a \Greatest Hits" list of Fair ML papers and books
that all researchers entering the eld should study?

Dwork. The paper Fairness through Awareness[Dwork et al. 2012] initiated
the study of fairness in machine learning. Among other things, it articdates and
elaborates on the di erence between individual and group notions of fairess. In-
herent Trade-o s in the Fair Determination of Risk Scores [Kleinberg et al. 2016]
is a seminal paper that demonstrated a fundamental con ict between seeral very
natural de nitions of group fairness.

Preventing Fairness Gerrymandering: Auditing and Learning for Sulgroup Fair-
ness[Kearns et al. 2018] andMulticalibration: Calibration for the Computationally-
identi able Masses [Hebert-Johnson et al. 2018] contemporaneously introduced
multigroup fairness: a setting where fairness guarantees are givemif each group
in a potentially complex (e.g. large and intersecting) family of population groups.
Multigroup fairness can be viewed as providing a bridge between ingidual and
group notions of fairness.

Mullainathan. The eld of algorithmic fairness is still in its budding stage,
so we have ample opportunity to contribute to the literature by coming up with
novel models of real-world phenomena we care about. By contrast, in manyell-
established research areas a lot of modern-day research is a furthetaboration of
existing models. An excellent general-audience book illustratig how recent fairness
research connects with real-world issues and phenomenaThe Ethical Algorithm:
The Science of Socially Aware Algorithm Design[Kearns and Roth 2019].
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6 E. Diana et al.

Interview with Annie Liang

Annie Liang is an Assistant Professor of Economics and
Karr Family Assistant Professor of Computer Science
at Northwestern University. Her research is in economic
theory, and the application of machine learning methods
for model building and evaluation.

As an invited speaker at the SIGecom 2022 Winter
Meeting, Dr. Liang gave a presentation on her recent
work \Algorithmic Design: Fairness vs Accuracy". This
paper is joint work with Jay Lu and Xiaosheng Mu.

Dr. Liang's talk described an elegant framework addressing the importantand
delicate issue of balancing accuracy and fairness in automated decisionaking. For
concreteness, imagine an automated hiring process where a decisioraking algo-
rithm receives features of candidates coming from two di erent popuation groups,
and outputs a binary hiring decision for each candidate. We (the desiger) can
control which decision-making algorithm is used, as well as regulate whanforma-
tion the algorithm can access about the candidates. The central object of sidy is
the accuracy-fairness Pareto frontier, which characterizes all \optinally fair" ways
for us to trade o the algorithm's performance (i.e. its error rates) on ead of the
two population groups. Many natural notions of fairness are permitted, induding
the egalitarian (the group errors must be similar), the Rawlsian (both group errors
must be small), and the utilitarian (the overall population error must be small).

Even though it is simple, this framework is surprisingly rich and yields plenty of
rigorous qualitative insights on the accuracy-fairness trade-o | in part icular, on
the implications of the algorithm using or ignoring the candidates' group identities
or group identity correlates. This helps cast new light on some hotly dehted real-
world topics such as the Ban the Box movement, and the ban on using tesscores
for admissions purposes implemented by some US colleges.

In our post-meeting interview, Dr. Liang told us more about this exciting research
project, and also spoke about her academic trajectory and her perspeage on the
growth and development of the econ/CS community.

I would like to start by asking you about your academic path so far.
What brought you to the econ/CS intersection?

I've had an outsider's respect for CS since undergrad at MIT: | was mysié an
economics and math major, but computer science was very big there, aridabsorbed
this idea that computer science was really cool. | didn't personallyget interested
in computer science until | was in graduate school in economics. The itial hook
for me was di erent de nitions of complexity, but my interests qui ckly grew from
there. And it was a good time to be thinking about CS, since economistavere
starting to become aware of and get excited about machine learning. Sewarof the
faculty organized reading groups with students to learn about new ideasi CS. And
later, | was fortunate enough to do a postdoc at Microsoft Research, wheré was
exposed still further to computer scientists working at the econ/CS intersection.
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SIGecom Winter Meeting 2022 Highlights 7

What did the econ/CS area look like from your perspective back then?
And which directions are you excited about right now?

When | was in grad school, CS/econ was still a niche area | that has changed
quite a bit in the last couple of years, which | am really happy about.

I think there are several interesting directions at present. For kample, there's the
growing area of econometrics and machine learning (related to causal iefence),
and machine learning is increasingly used as a new tool in empirical enomics.
I've personally been most involved in the intersection between madtne learning
and economic theory.

In principle, there's a con ict between the machine-learning, orblack-box, way of
doing prediction and the way that economic theorists think about model building.
Economic models tend to be interpretable theories that o er some narative or ex-
planation about the underlying behavior, while black box machine leaning models
are often complicated objects, where it isn't clear why the black boxis predicting
what it is. But I've always thought that there were potential complem entarities
between these two methods, and a lot of my recent work has been about hhowe
can use black boxes to better evaluate or improve on economic models.

In the other direction, | think that economics has a lot to add to computer
science as well. In the last decade or so, computer science has takenuart away
from developing algorithms with clear, well de ned criteria in mind | such as
predictive accuracy { to considering these algorithms within a large social context.
Economists can de nitely contribute a lot here, because economics hasad a long
history of developing frameworks and tools for reasoning about social welfe.

What speci ¢ bene ts do you think economic modeling can contribute
to future fairness research?

One of the things | am most excited about regarding the paper that | preseted
at this workshop is that we were able to import an economics perspectiven welfare
and preferences in these settings.

Much of the literature in CS on algorithmic fairness literature has foaused on a
speci ¢ optimization criterion|for example, showing how to optimiz e for e ciency,
subject to constraints such as equalized error rates. In the paper it | presented,
we de ned a broad class of dierent preferences that the designer nght have,
varying across many di erent ways of trading o between fairness and acaracy:
from utilitarian preferences to pure egalitarian preferences. Manyinsights in this
paper hold without needing to specify exactly what the objective function is. There
are even certain policy recommendations that hold uniformly across thisdiverse
class of fairness-accuracy preferences.

Broadly generalizing, | think there is a tendency in computer sciege to want to
provide a solution to the problem at hand. This is a bit di erent from the way that
economists approach the problems that emerge in social science, whahe goal is
sometimes not to provide a solution, but rather to gure out how to thi nk about
the situation and the inherent trade-0 s. There's clearly value to both approaches.

The paper you presented at the Winter Meeting o ers nice geometric
insight into the nature of this fairness-accuracy Pareto frontier. A t the
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8 E. Diana et al.

same time, this is enabled through the setting being two-dimension al:
in particular, the paper mostly deals with two population groups, and

the case where you can only undertake binary actions (such as making

an accept/reject decision) for each data point. How hard do you think it

would be to extend these results to more groups or more actions while
keeping the geometric insights intact?

Extending this theory to more groups is probably not di cult. One woul d need
to decide on how to generalize the fairness notion: should we be compag groups
individually, or relative to some average, or looking at the worst-o and best-o
groups? But ultimately, this choice probably will not have a qualitati ve impact on
the results.

Regarding more than two actions: the full design case in the rst half of he
paper extends readily. It's once we bring in the information design poblem that
we actually start using the binary nature of the actions.

How did this project begin? Did it stem from you and your collab-
orators thinking about various fairness problems out there, or perhaps
from a concrete mathematical problem?

I've been aware of the algorithmic fairness literature in computer stence for
quite a while, and already during my postdoc people were very exoitd about it.
So | have been following and admiring this literature, and | de nitely wanted to
write a paper on this topic. My collaborators and | were especially intrigued by
the trade-o between fairness and accuracy rates: it seemed eviderthat such a
trade-o might occur when groups have di erent distributions, and w e wanted to
know if we could say something about it. All three of us have experiece working
on papers in information economics, and we naturally were also curious aboutow
the information fed into the algorithm a ected the nature of this trade- o. So we
began by sketching out some formal models to think through these quegins, and
went from there.

How fast do you anticipate the econ/CS and fairness areas will be
developing in the near future? And what does this mean from the per-
spective of young researchers in these areas who are planning to ente r
the job market?

There are many signs indicating that this is an emerging and rapidly deeloping
area. In the last couple of years, graduate students in economics have breicreas-
ingly going on the job market with econ/CS papers and getting great jobs. [I've
also been noticing more and more job postings explicitly looking for sonteody in
this intersection.

I know you have participated in organizing several great workshops
focused on game theory, and on the social impact of machine learning.
Naturally, these events bring together researchers with unique pe rspec-
tives on fairness and econ/CS. Could you speak about your experience
organizing the workshops and bringing together all these di erent speak -
ers, and any takeaways?
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SIGecom Winter Meeting 2022 Highlights 9

As | mentioned, this intersection is growing very rapidly | but 1 n d especially
interesting that it is growing in many di erent directions simul taneously. In general,
| think one shouldn't picture the econ/CS intersection as economistgas a monolith)
interacting with computer scientists (as a monolith): there are mary exchanges
going on here, and many di erent subcommunities involved. For example my
initial exposure to computer scientists was through the algorithmic gane theory
community, and | only realized after a while that there was a separate makine
learning community, with a di erent (but overlapping) group of peopl e and set
of conferences. And in the same way, economic theorists are not the same as
econometricians who are not the same as empirical economists, although eaoh
these groups has recently been shaped in some way by computer sciencSo the
most interesting takeaway for me so far has been the vast diversity dhese synergies
between the two elds.

It will be interesting to see how this evolves. Will there ultimately be a CS-
Economics eld housing all these di erent people? Or will each area \ithin eco-
nomics and within CS be in uenced by this interaction in a di eren t way?

As a nal question, can you say a bit about your hobbies?

I've been a learner of Russian since grad school. At some point, | may dile
it's good enough and move on to something else, but right now | am still eally
enjoying continuing to improve my understanding of the language.
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Interview with Ariel Procaccia

Ariel Procaccia joined the Winter Meeting as an invited
speaker to discuss his paper \Fair Algorithms for Se-
lecting Citizens' Assemblies." Dr. Procaccia is Gordon
McKay Professor of Computer Science at Harvard Uni-
versity and works on problems related to arti cial in-
telligence, algorithms, economics, and society, and he is
especially excited about projects that involve both inter-
esting theory and direct applications. Most recently, his
sortition algorithm and online framework at Panelot.org
has been rapidly adopted by government agencies for
their selection processes to form citizens' assemblies.

Dr. Procaccia was gracious enough to agree to speak with us about fair divis,
Panelot, and several tidbits of his experience as an academic.

Algorithmic fairness has exploded in the past few years. Where do you
see the eld going? Similarly, what do you think are the most important
open problems and areas for future research in the eld right now?

Let me mention one direction that | think is important. The study of fair ness
in machine learning has developed almost independently from fair digion, an area
that dates back to the 1940s and has very similar goals: to de ne rigorous notions of
fairness and devise methods for achieving them. Not surprisingly, otions developed
in fair division can be applied to fair machine learning. For example, tte classic
notion of envy-freeness can be used to design fair classiers: the ility of each
individual for their own (possibly random) outcome should be at least as ligh as
their utility for any other individual's outcome (this makes sense when utilities are
heterogenous). Going forward, | believe that ideas from fair division, ad, more
generally, from normative economics, have a much bigger role to play irefr machine
learning.

Can you tell us a bit about your experience with Panelot and working
with government o cials? For example, how did you get interested
in algorithms for political fairness purposes? Was it hard to get your
algorithm publicized and launched?

I've always been excited about the intersection of computer scierecand democ-
racy. | got interested in sortition { random selection of representatives { speci cally,
when my Ph.D. student Paul Gelz recommended to me an amazing book, \Agaist
Elections" by David Van Reybrouck. In 2019 | wrote an opinion piece about sor
tition, which led to conversations with practitioners. Eventually Paul and | were
invited to a demonstration of an algorithm for selecting citizens' assenblies, which
was developed and presented by Brett Hennig of the UK-based Sortition &un-
dation. This was the beginning of a wonderful collaboration with the Sortition
Foundation, which later facilitated the deployment of our own algorithm and its
adoption by other organizations.
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How did you handle the code development and professional software
production for Panelot?

Our selection algorithm was coded up by Paul, and in the initial deployment
we simply plugged his code into the open-source interface createdytBrett. The
website Panelot.org, which makes the selection algorithm more easily aessible
was mainly created by Gili Rusak, who was a master's student at Stanfordht the
time and will start her Ph.D. at Harvard in the fall. Other contributors (who also
played key roles in designing the algorithm) include Bailey Flanigan ad Anupam
Gupta. To summarize, code development and software production werall done
on a pro bono basis by our research group, and the code is open source. (That
said, there are some expenses, including the design of a professiolmajo and, more
signi cantly, running Panelot on AWS.)

Do you have any advice for young researchers?

My number one advice for young researchers is \frequently say no." Acagimia
has an unusual work ow in that one is asked to do many things (reviews, pogram
committees, talks, department service, etc.) by many people who & not aware of
each other's requests. This issue is especially acute for young fdtyumembers, who
typically say \yes" to almost everything and end up being inundated with tasks
they can't complete. Be judicious about what you agree to do.

What do you enjoy doing outside of research?

I have three kids (13, 8 and 3) so between family and work | don't have a lot
of free time. But one thing | still greatly enjoy is playing video games. Currently
I'm perhaps 60-70 hours into Elden Ring and, disturbingly, the game clains my
progress is 20%, so | expect to nish it around 2025.
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12 E. Diana et al.

Interview with Hoda Heidari

For the last talk of the Winter Meeting, we had the
pleasure of listening to Hoda Heidari discuss her recent
paper with Jon Kleinberg, \Allocating Opportunities in

a Dynamic Model of Intergenerational Mobility."

Dr. Heidari is an Assistant Professor at Carnegie Mel-
lon University with joint appointments in the Machine
Learning Department and the Institute for Software Re-
search. She is broadly interested in societal aspects of
arti cial intelligence and machine learning and, in par-
ticular, algorithmic fairness and accountability.

Dr. Heidari was kind enough to give us an inside perspective on her papeand
share her broader experiences as an academic in this growing eld.

| see that you recently joined Carnegie Mellon as a faculty member.
How has your transition been?

It's been great. My job responsibilities as a faculty member are dierent com-
pared to when | was a doctoral student or postdoctoral fellow, so de niely the
volume and diversity of responsibilities amps up substantially, bu | also have the
privilege of advising students and teaching classes that | enjoy. Soverall, | have
more on my plate, but at the same time more autonomy and opportunities to
push my research agenda forward and contribute to training the next geeration of
researchers in my eld.

| see you are teaching a class \Machine Learning, Ethics, and Society. "
It sounds exciting to be teaching a course on very new material { is it
di cult to have it be comprehensive and t together as one unit?

It de nitely is { as you mentioned, the material is very new and the research
community as a whole is still trying to gure out its path and purpose. Currently,
my approach is to o er a sample of the existing research landscape. | hopthat
at the end of the semester the students see a common thread, but | dano er the
topics as sequentially related to one another. That's something re etive of where
the research is, and | think it is, in a sense, liberating. There arenot that many
standard topics and methods you feel obliged to cover, so you get to shapihe
syllabus to teach students how to critically evaluate new situatiors and problems
they may face in the future.

And have you been nding that there are specic things that the
students get really excited about?

It's amazing how engaged the students are in the class discussions. lake sure
to have multiple open-ended discussions because this is not a tapyou can cover
through a one-sided lecture in which you tell them what is the corretor right way of
looking at the problem. It's important to stimulate students' own w ays of reasoning
about a new scenario. One area that my students often passionately exgss their
thoughts and experiences on is the issue of fairness, and one common therim
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their comments is about the limited and narrow nature of existing de nitions of
fairness. Their concern is justied as much of the mathematical modéng that

has been done around fairness is really about a very narrow de nition of paty in

predictive outcomes, and they are only valid for very speci cally de ned decisions.
They do not capture a whole lot of other important factors including procedural
and social justice considerations. What was the process by which théecision-
making system came to be? What is the institution governing syster® What are
the checks and balances around it? What does fairness even mean in thpegic

context of decision-making? These are re ected in students' quesns asking why
we are focusing on the speci c de nitions of fairness and the reseahccommunity

hasn't moved on to much broader notions. | think the students always ightly point

out that the existing formalism somehow feels very limiting and | think they're

absolutely right. One way in which | think we can address some of theseoncerns
is through e ective engagement with stakeholders and impacted commurties. So
| make sure to have a module in my course that brings in community-orented
approaches and perspectives.

One question that | had about your paper modeling a rmative action
policies is whether there was interest in implementing these d ecision-
making procedures and trying to do any behavioral studies. Is ther e an
application coming up?

I am not sure { with a stylized model of the type we proposed, the pointis not
necessarily to claim that the model is su ciently realistic to war rant real-world
applications. Rather the purpose is to strip away all sorts of nuances ath layers
of complication from the real world, so you can rigorously analyze a very stijzed,
hypothetical world instead. There were two key points that we were tying to make
with our analysis. One relates to the discussions around the temporaryersus
perpetual nature of a rmative action. Usually a rmative action-type polic ies are
cast as temporary measures to level the playing eld, but it is not ckar what
that means and what would be a good way of phasing it out. The second point
relates to \fairness interventions" { for instance, enforcing statistical parity is not
exactly the same as a rmative action, but it clearly is conceptually similar. So
we should carefully consider the dynamic consequences of enforcisgch fairness
constraints. It's not just that we are employing this intervention today and we are
done tomorrow, but rather we should think about what the impact of it is on t he
underlying population and how we should update the model moving fonard.

Finally I should emphasize that for a highly charged topic like a rmative action,
implementation is usually something that is impacted by many political considera-
tions, and we de nitely don't think our work on its own is su cientto  inform such
decisions.

Yeah, that makes sense. | like that you were able to frame the problem
in a way where you weren't explicitly weighing the moral implicati ons of
armative action but rather taking a long-term utilitarian perspectiv e.
I'm curious what pushback you got in this paper.

If you look at economic models of a rmative action, one aspect that's usually
accounted for is the strategic component of agents' behaviors. A typical radel
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would assume that parents have a certain amount of endowment, and they etide
what portion of it to invest in their o spring. We basically ignored strat egic con-
siderations and instead focused on the temporal aspect, which was sonhétg that
was absent from prior work. So the absence of strategic modeling was one il
criticism. The other more conceptual criticism was that some readershad a hard
time distinguishing between socioeconomic a rmative action and a rmative ac-
tion based on demographic characteristics such as race or gender, and the moral
implications are obviously very di erent. We always try to be very clear about that
distinction when discussing our work.

Your primary location is in computer science, but you also work in
the intersection of computer science and economics. Do you nd that
there are a lot of challenges translating between the two communitie s?
Do you think that they complement each other well?

Well, having thought for a while about the ethical considerations aroundmachine
learning and Al (which are topics in humanities and social sciences), have realized
that the synergy between economics and computer science is already gte There
is a common language that people in both elds speak. Game theory, for example
is one such tool used by both computer scientists and economists. We ayn be
more interested in algorithmic problems and they may be interestedmore in the
modeling component, but at the end of the day, we all do math. Now that my
work has shifted more towards ethical considerations such as fairness arexplain-
ability, | have started collaborating with scholars in philosophy, law, sociology and
so on, and we are still in the process of forming that common language. Therns
already a tradition of computer scientists and economists working togetler, which
has been going on for almost two decades now, whereas the collaborations betmn
computer scientists and scholars in social sciences and humanitiés very new. So
we are currently at a formative stage { de nitely uncertain, but at the same time,
immensely exciting.

What is your process like for coming up with problems?

| don't think | have a very systematic way of coming up with problems. Reading
and talking to people, that's my main source of inspiration for choosing esearch
problems. | nd that interdisciplinary exchanges { having conversations with col-
leagues from di erent elds, people who have di erent views or experiences on a
topic { are fantastic sources of inspiration for research, so | try to mairtain those
conversations.

Finally, who is one person who has been quite impactful on your career,
not counting your doctoral advisors?

Jon Kleinberg has always been a source of inspiration and my academic role
model, and | have been lucky enough to collaborate with him closely owvethe past
few years. When | was a doctoral student at Penn | took a microeconomicaurse
taught by George Mailath. He was one of the best teachers | have seen in myfdi
and de nitely what | aspire to emulate as a teacher myself ... although Irealize it
will likely take twenty to thirty years of research and practice to b ecome a teacher
of that caliber!
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Interview with Ashesh Rambachan

Ashesh Rambachan presented his job market paper,
\Identifying Prediction Mistakes in Observational Data"

in the Winter Meeting. Dr. Rambachan completed his
Ph.D. in economics at Harvard this May, will be a Post-
doctoral Researcher at Microsoft Research in 2022{2023,
and will join MIT's economics department as an Assis-
tant Professor in 2023. His job market paper investi-
gates how to identify systematic errors in human deci-
sion makers' prediction-based decisions when their pref-
erences and private information are unknown to the re-
searcher.

After the talk, Dr. Rambachan generously shared with us about his reseaitt and
graduate study experience.

Your paper \An Economic Perspective on Algorithm Fairness" with
Kleinberg, Ludwig and Mullainathan brie y mentions two opposite forc es
at work in automated decision-making: the algorithm may simply re ect
or correct the bias in data. Could you say more about the interaction
between bias and machine learning?

People have reasonable intuition that if you train on historical data that i s gener-
ated by some discriminatory process to then estimate some machinedrning-based
model, the model's predictions and the resulting decisions maye discriminatory
as well. So we try to point out the ways in which that intuition is not q uite right.
After we estimated some model to predict outcomes as a function of obseable
features, we ultimately have control over the decision rule that translate these pre-
dictions into decisions. We can implement a decision rule based orhat prediction
function to equalize decisions, whatever our notion of fairness is. Tis is the point
we want to make in my paper with Jon, Jens and Sendhil.

In the \bias in, bias out" work, we try to think about under what condition s
the discriminatory data generating process leads to a discriminatoy prediction
function. To give you an example, from the pretrial release system, weiltimately
want to predict whether or not a defendant will fail to appear in courts, but we
only observe that outcome if a judge decides to release the defendantstorically.
One model of a discriminatory data generating process is that the jude is taste-
discriminating against minority defendants, meaning the judge ses a higher thresh-
old for the minority group when forming predictions about the probabilit y of release.
However, a higher threshold for release for the minority group implieghat minori-
ties that are released are positively selected on unobservables or tligdge's private
information. Then among the released defendants, minority defendas actually
show lower risk. In this example, discrimination in the data geneating process will
actually yield a prediction function that is more favorable to the min ority group.

It seems to me that the majority of the literature looks at issues suc h
as potential biases, or under-representation for minority groups, but
sidesteps the ethical aspects about whether or not depending import ant
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life decisions solely on measurable data is the right thing to do in th e
rst place. What is your take on this?

| think that is the heart of the problem in the application of data-driven decision-
making tools in social policy domains. The data we have to train these mdels were
generated by human decision makers. As a result, economics values and @masizes
two key features of these settings. First, heterogeneity: there rmy be important
di erences across individuals in how they make decisions. How daethat a ect
the data, and in turn aect the models we train on that data? The second is
unobservables: individuals may observe extra information that is reorded, and so
we have to account for them and how they a ect the training data. One thing
| want to emphasize is that there may be certain conditions under whéh we can
actually formally test whether human decision makers actually have valiable private
information available to them. That is what | do in my job market paper, and |
think it is an important diagnostic for users of machine learning tools in high-stake
policy settings { rst ask could there be private information/unobserv ables that
could explain human decision makers' choices. If so, this may serve &s strong
argument for not using automated decisions. Or we could ask what is that prate
information, could we in principle go and collect such information.

One key result in your job market paper is a sharp partial identi ca-

tion of correct beliefs under expected utility maximization. If th ere's
no belief in this range that rationalizes observed choices, then the p aper
interprets it as \incorrect beliefs". Alternatively, the gap bet ween ob-
servations and model implications may arise because the expected u tility

theory itself is not descriptively accurate. Could it be that people are

making the right decisions, and that we researchers try to use some
oversimpli ed model to t human behaviors?

First, expected utility theory is the natural benchmark that ever y empirical re-
searcher in economics is going to reach to model decision-making undencertainty.
So understanding what we can and cannot say about beliefs under expesd utility
framework is a valuable exercise. Second, | also think of it as a normatévrestric-
tion on behaviors. For example, it is reasonable to say that the policy ma&rs in
the pretrial release setting would like judges to act as if they wereexpected utility
maximizers. Now you could question whether we actually want decision rakers to
be expected utility maximizers in the rst place as opposed to some dier decision-
theoretic criterion. That objection highlights that when we deploy machine learning
tools, it becomes even more important for policymakers to be extraordiarily ex-
plicit about (a) the objective function and (b) how exactly they want t hat objective
function to be maximized.

Could you share with us how you came up with ideas for your job
market paper?

| came up with this idea because I've been spending a lot of time thmking about
the use of data-driven tools and the related econometric issues. Onding | kept
coming back to is a very simple question: why exactly would a policy raker want to
replace a decision maker with an algorithm? What are forces that are on the tale?
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After conversations with a lot of people, | believe there are three keyorces at play
in these settings. One is that the policy maker may worry that decison makers
mispredict based on observed features. Second they may think thatetision makers
have an objective function that is misaligned with the policy maker's objective
function. Third, decision makers may have private information. So | wanted to

think about how | can actually use data to test whether these forces eist, what

the magnitude of these forces is and how understanding these forcesudd in turn

inform the design of algorithmic tools. So that's where this paper came ou

When writing your job market paper, did you come across any major
obstacles or changes in direction?'

| would say for me the biggest turning point was thinking about an actual appli-
cation. Only once | had been thinking through the real-world empirical application,
which ended up being the pretrial setting that | focus on in that paper, did | really
realize that there was a lot of stu in the theory that | hadn't fully thou gh through
that was important empirically.

Is there any particular result in your paper that you appreciate the
most? Is there anything you are not yet satis ed with and may work
further on in the future?

The result | got most excited about is that in this pretrial application, you
can test whether choices are consistent with expected utility wih any accurate
belief under some weak assumptions about the decision maker's utijitand the
decision maker's private information. On the empirical side, when lactually applied
that identi cation result to the data and found that a large fraction of jud ges are
actually making decisions that are inconsistent with the model, | fdt that was
pretty exciting.

In terms of next steps, | really only provide some limited evidene of what we
can say about the misspeci ed beliefs in the current paper { | provde some results
that you can bound the extent of beliefs, and de ne accordingly overreation and
underreaction. But that could be consistent with many behavioral exdanations of
what's driving the prediction mistakes. Is it because judges fail b pay attention
to all the evidence available to them? Is it because they overweiglor underweigh
some piece of the information? It would be exciting to know whether v can use
this sort of data pinning down whether choices are consistent with sme type of
behavioral mistakes or not. | think understanding the ways in which beliefs are
biased will be helpful in understanding how decision makers likgudges respond
to the introduction of data-driven tools. If we can say something aboutwhy their
beliefs are misspeci ed, perhaps it would suggest sensible polidgnplications.

What do you view as the biggest challenge as a graduate student? Was
there anything you found di cult as a graduate student?

| think it is not particularly unique to me, but managing the transiti on from
being a full-time student in the rst two years to working on research was de nitely
challenging. | was very lucky to have great advisors who can help me out alanthe
way, but that was certainly a challenge.
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When learning about an interesting topic, it's easy to gather many
relevant papers. Reading is rewarding but time is limited. How do y ou
cope with the problem of having too much to read?

One piece of advice | got early on in graduate school is that you need to know
when you have learned enough about existing literature to start workirg in it, but
not enough to overly shape your thinking with how the literature approaches the
problem. To answer the question, you may need to do something di eent. What |
found is that, sometimes it is better to start earlier, and start to th ink about what
you would do in this setting, and once you have that written out, and then going
back to read more, rather than trying to read them all in one shot.

In retrospect, is there anything in your Ph.D. student life that y ou feel
glad about and think you are doing particularly right? Is there anything
you regret and wish you had been better informed about earlier?

One thing | am really glad | did is to start working on research relatively early on.
When | started my third year, | had collaborations with faculty members and other
graduate students. The way | learned about how to write papers is by woking with
faculty, with people who had published papers. That was very helpfli Something
| still struggle with is when | remember being frustrated with my self during my
Ph.D., not realizing that there are limited chunks of truly produc tive windows in a
day or in a week. It's good to work hard, but you cannot slam your head on your
desk to no end; that's not going to help you do better research.
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Interview with Aislinn Bohren

In one of the tutorial sessions, Aislinn Bohren talked
about two of her recent papers on the dynamics of dis-
crimination and systemic discrimination. Dr. Bohren
is an Associate Professor of Economics at the Univer-
sity of Pennsylvania, and she works actively on topics
in microeconomics including discrimination, misspeci-
ed learning and information aggregation. Her work
has both theoretical and empirical components.

Dr. Bohren's rst paper, \The Dynamics of Discrimination: Theory and E vi-
dence", introduces a dynamic dimension in the discussion of disgnination. In this
paper, the empirical nding of dynamic reversal { the initial discr imination against
one particular group ends up working in favor of this group { provides evdence
for belief-based discrimination with incorrect belief. More importantly, this paper
points out that dynamic reversal does not o set initial discrimination , and thus this
sort of discrimination causes systematic under-rating for the initially discriminated
group. The second paper, \Systemic Discrimination: Theory and Measurment",
goes beyond the classic economic position of \direct discrimination" | h olding all
the other observables xed to isolate the direct e ect of group identity | and pro-
poses the concept of \systemic discrimination”, which demonstratestie pronounced
indirect e ects of earlier or contemporary discrimination.

In an interview after the winter meeting, Dr. Bohren gave further insight on both
papers, and also shared some thoughts on doing economic research.

How did you start to study algorithmic fairness and issues of fairness
in automated algorithms?

My dissertation research started with the project on the dynamics ofdiscrimi-
nation. A lot of discrimination research in economics had focused on a vgrstatic
guestion: in this period in time, is there discrimination, can we causally identify
it, what are the sources, is it caused by some taste preferences or iscaused by
beliefs. In a joint project with Alex Imas, we found a really neat online forum where
you could test how discrimination evolves across time. Our intuitionwas discrim-
ination may evolve especially if it's caused by beliefs. If people & discriminating
at entry-level positions, then that could also a ect discrimination at the promotion
stage of the subsequent hiring stage.

The platform provides a publicly available reputation score, whichis a summary
of past performance on the site. So we used that to causally test how dismi-
nation varies with positive past performance reviews. In that paper wefound a
discrimination reversal by gender. Looking at how math questions werevaluated,
we generated the posts ourselves and then randomly assigned the qualiof posts
to each gender. We found discrimination against users with female nameat the
entry level, but users with female names are actually favored at the lgher educa-
tion level. Paired with the theoretical analysis, we showed that this is consistent
with discrimination that stems from inaccurate beliefs.
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In the course of that paper, we thought over the standard de nition of discrim-
ination used in economics, which identi es discrimination by holding xed what's
seen at that decision point and comparing populations with similar obserables.
But actually if a man and a woman who generate the same initial quality post
receive di erent reputation scores after those posts, we should congre people who
have similar quality posts, not people with similar reputation, because their reputa-
tion has already embedded some discrimination. That's what motivated ourrecent
systemic paper, which was trying to broaden the de nition of discrimination in eco-
nomics to capture the systemic factors that seed the di erences irthe reputation
aggregated at the decision point.

| think that's actually quite closely related to a lot of the algorithmic work in
computer science. Within an algorithm, what direct discrimination would corre-
spond to is di erential treatments for users who have the same obsembles except
for their group identity. That would be an algorithm that's explicitly u sing group
identity to discriminate but the missing fact is that the algorithm might be trained
on data that already has some discrimination baked into it. Even if you're using
a group blind decision rule, say, a male user and a female user with éhsame ob-
served variables are treated the same in the algorithm, still a male and demale
with the same underlying productivity may be treated di erent ly, because they
have di erent observables that stem from discrimination in the past. So it's very
closely connected to this idea that algorithms may lead to di erential treatments
across groups even if they do not explicitly discriminate against any grop.

What would you say is a desirable goal for those conducting economic
research on discrimination?

The rst best would be to eliminate discrimination, but given that p eople often
can't, any sort of policies to reduce discrimination, any decision noé or any sort
of way economists can provide evidence for a hypothesis that can rededaiscrimi-
nation, will at least be moving things in the right direction. A key com ponent of
my paper with Alex Imas as well as Peter Hull is what we call total discrimina-
tion | the sum of direct and systemic discrimination. Essentially i t needs to be
de ned against a reference point | that's a choice variable for the researcher. At
the one extreme, your reference point is a constant and you can think ofhat is
measuring all group-based disparities starting from birth or even befre birth. On
the other extreme, you could set that reference point as all the obseables now and
that would collapse things to the de nition of direct discrimination. But there's a
whole continuum of reference points in between. By choosing a rafence point in
between, it's not saying that the discrimination that occurred before doesn't matter
or didn't occur; it's measuring discrimination that's occurred since this point.

Little bits of discrimination are added at each point in the pipeline and so try-
ing to gure out where you can make decisions, then isolating the disdimination
that's occurring along your decision nodes, can help researchers ga out e ective
policies to target that particular discrimination. Di erent policie s will help elim-
inate discrimination in elementary school versus in higher univesity, so breaking
it into di erent pieces will let you more e ectively target a bit of it at a time. |
really think this research can be useful, and people may not be aware afr have a
way of thinking about systemic discrimination. So one of our goals of formatiing
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it conceptually is to make people more aware that there may be bias bakeihto
things you're looking at. Once you have a framework thinking about the ystemic
discrimination, it can help inform the public about a sense in which ways where
discrimination may be baked into decisions.

Apart from economics, other social sciences are studying discrimin a-
tion seriously as well, such as anthropology, sociology and psychology.
How do researchers in these disciplines approach discrimination com -
pared to economists?

Other elds like sociology and psychology have been thinking about tls idea
of systemic discrimination or algorithm fairness things from a broader pespective.
So one of our goals of our systemic paper is to provide a framework to formally
de ne and gure out how to measure and identify, using methods in eonomics,
these more broad de nitions of discrimination that other elds and other literature
have been considering for a while, to try and bring economics up topeed in terms
of thinking beyond just direct discrimination.

| also noticed that you have been doing research on misspeci ed learn-
ing. Do you have any suggestions for someone who wants to learn more
about this topic, or any speci ¢ techniques or open questions that peopl e
should be familiar with?

Yeah, | think it's a relatively new literature, and | do think ther e's a lot of open
guestions. I'd say if you're interested in further reading, the literature review section
in my paper has a lot of citations about other recent work, so | would start there
and read through some of the other papers that have been written in the pds
| think there's a lot of room for interesting applications like taking misspeci ed
models and guring out conceptually when they're relevant for particular markets
and guring out what sort of di erent predictions we can get or what empiri cal
facts can be justi ed by the correct model in terms of belief updating with errors.

Is there any overarching theme or question that you constantly come
back to in your research?

Broadly I'm really interested in how people learn from information. The assump-
tion that people correctly interpret information and have rational expectations us-
ing Bayesian rules can be too strong. But once you relax that assumptionyou,
as a researcher, have a lot of degrees of freedom. It's really importanbttry and
relax those models grounded on empirical work, observations of what's acally
happening, but in a way that doesn't give you too much freedom. So I'minterested
in providing theoretical foundations for these types of questions, ad | also think
a really important application is discrimination. In that line I'm also interested
in taking these insights to more applied settings, like a discrimnation setting, to
see how they impact markets. That's one motivation for systemic disamination;
but, more broadly, | think that the idea of systemic discrimination i s opening up a
whole new door for really interesting research questions and so I'mdping to also
keep working in that area.
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How would you distinguish good projects which truly contribute to
the literature from those that are minor extensions from the existing
literature?

It's hard to describe generally; it's more on a case-by-case basis. Baally, if
you'd want to make a change to an existing model, you want to have good motia-
tion for it. So you need to start with either some good psychological motiation or
evidence for why this extension is relevant, rather than just sayng like \Oh, you
know, let me try and extend those elements in a random direction”. Youalso need
to generate new predictions that are testable and plausible from your mdel if you
want to get a lot of mileage out of the new restriction. You want to make some
sharp predictions and see it tie back to things that you actually see in narkets.

What counts as a good paper for you? Of course, good papers should
be written well and might use neat techniques. But other than that, is
there any particular factor that you care about when judging a paper?

| like papers that are conceptually creative, papers that start with some evidence
from the real world and then sort of conceptually push our boundaries and ha we're
thinking about things as economists. | think de nitely there's tec hnical papers that
make important contributions too; but in terms of what | enjoy reading, | enjoy
the conceptual creativity.

Could you share with us how you handle unproductive periods as a
researcher?

I think if you're stuck on something, it's always good to work on a couple of
projects. You don't want too many, because then you'll be too scatteed; but also
if you have only one and get stuck on it, you might just keep staring at the ame
thing, whereas if you have something else, you can just take a break andosk on a
di erent project for a week. Then you go back with a fresh perspecive and can see
the bigger picture. So have a couple of things you're working on, so thayou don't
be afraid to put something on for a few days. When you're just trying to do the
same thing over and over, it's not working. For me, if I'm trying to th ink through
something, I'll take a walk to gure a way to get around that issue.
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The theory of algorithmic fair allocation is at the center of  multi-agent systems and economics
in recent decades due to its industrial and social importanc e. At a high level, the problem is to

assign a set of items that are either goods or chores to a set of agents so that every agent is happy
with what she obtains. In this survey, we focus on indivisibl e items, for which exact fairness
as measured by envy-freeness and proportionality cannot be guaranteed. One main theme in
the recent research agenda is designing algorithms that app roximately achieve fairness criteria.

We aim at presenting a comprehensive survey of recent progre ssthrough the prism of algorithms,

highlighting the ways to relax fairness notions and common t echniques to design algorithms, as
well as the most interesting questions for future research.

Categories and Subject Descriptors: 1.2.11 [ Distributed Arti cial Intelligence ]: Multiagent
Systems; J.4 [Computer Applications ]: Social and Behavioral Sciences| Economics

General Terms: Theory, Algorithms, Economics
Additional Key Words and Phrases: Fair Allocation, Envy-fr  ee, Proportional, Maximin Share

1. INTRODUCTION

While fair allocation is an age-old problem and the widely known Divideand-
Choose algorithm can be traced back to the Bible, modern research on faial-
location is regarded to be initiated by Steinhaus at a meeting of the Eonometric
Society in Washington D.C. in 1947 (Steinhaus, 1948). Since then, a large bly
of workin economics and mathematics has been directed towards undeestding
the theory of allocating resources among agents in a fair manner (Moulin, 2003)
The recent focus onindivisible items is motivated, in part, by the applications that
inherently entail allocation of items that cannot be fractionally allocat ed, such as
assigning computational resources in a cloud computing environment andourses

Authors' addresses: haziz@cse.unsw.edu.au (Haris Aziz), comp-bo.li@polyu.e du.hk (Bo
Li), herve.moulin@glasgow.ac.uk (Hene Moulin), xiaowe iwu@um.edu.mo (Xiaowei Wu)
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to teachers in a school. In the last decade, computer science has oexut a fresh and
practical angle to the research agenda { algorithmic fair allocation. In addtion to

designing algorithms, computer science has brought many more ideas, suas com-
putational and communication complexity, and informational assumptions, which

do not align with the main theme of the current survey. Interested readers can
refer to the surveys by Walsh (2020) and Aziz (2020a) for detailed discussiorfair

allocation algorithms have been implemented in the real world; for intance, Course
Match is employed for course allocation at the Wharton School in the Univesity

of Pennsylvania, and the websites Spliddit épliddit.org ) and Fair Outcomes
(fairoutcomes.com ) provide online access to fair allocation algorithms.

Although this survey mainly focuses on indivisible items, the study of fair al-
location was classically centered around allocating a divisible resaae, which is
also known as thecake-cutting problem(Brams and Taylor, 1996; Robertson and
Webb, 1998). Fairness is mostly captured byenvy-freenessand proportionality in
the literature. An envy-free allocation (which is also proportional) of a divisi-
ble cake always exists and can be found in bounded steps (Aziz and Mackas,
2016). Moreover, a competitive equilibrium from equal incomes guaranteeenvy-
freeness and Pareto optimality simultaneously (Varian, 1973). A recent ihe of
research extends the study to chores, such as the computation of emfyee alloca-
tions (Dehghani et al., 2018) and competitive equilibria (Boodaghians et al 2021;
Chaudhury et al., 2021a). Unlike divisible items, when items are indivsible, abso-
lutely fair allocations rarely exist. For example, when allocating a s$ngle item to
two agents, no allocation is envy-free or proportional. Accordingly, an exénsively
studied subject is to investigate the extent to which these fainess notions or their
relaxations can be approximately satis ed.

There are several surveys highlighting di erent perspectives ofair allocation the-
ory. Moulin (2018) reviewed the theory through the prism of economics. Alekan-
drov and Walsh (2020) and Suksompong (2021) respectively focused on the ordin
and constrained settings. Lang and Rothe (2016), Walsh (2020) and Aziz (2020a)
reviewed the problem in the perspective of broad computer sciencelnstead, the
angle of the current survey is algorithmic and the focus is particulary on the in-
troduction of common techniques to design (approximation) algorithms. Moreover,
we will discuss more sophisticated settings introduced in the lascouple of years
that uncovered new challenges and open problems in the eld of fair allcation.

Roadmap. In the remaining of the survey, we de ne the model of fair allocation
in Section 2 and introduce the widely adopted solution concepts in Sgions 3 and
4. In Section 5, we review the commonly used techniques to design fa@location
algorithms. In Section 6, we introduce more sophisticated settings tat have been
proposed recently. Finally, we discuss two more propertiesthat mabe desirable to
be satis ed together with fairness, e ciency and truthfulness, in Section 7.

2. MODEL

partition X =(Xq;:::;X,)of M, whereX; M is the bundle allocated to agenti.
Itis required that each item is allocated to exactly one agent, i.e. X;\ X; = ; for all
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i6jand[inXij= M. If [i2nXi 6 M, X is apartial allocation. We sometimes
consider fractional allocations, denoted byx = (Xie)izpl;eZM , where 0 Xje 1
denotes the fraction of iteme allocated to agenti, and ;, Xie =1forall e2 M.
Each agenti has a valuation function v; : 2 1 R that assigns a value to each
bundle of items. Whenv;(S) Oforalli 2 N andS M, the items are goods
whenvi(S) O for all i and S, the items are chores For ease of exposition, we
mainly discuss the case when the valuations are additive and leave thdiscussion
on more genegal valuations to Section 6. That is, for anyi 2 N and S M, we
have vi(S) = ., Vi(feg). When there is no confusion, we usev;(€) to denote
vi(feg). Further, forany S M ande2 M, we useS+ eand S e to denote
S[f egand S nfeg, respectively. Letl = (N;M; v) be a fair allocation instance

in values (i.e., vi(1) vi(m) for all i 2 N), the instance is calledidentical
ordering (IDO).

Before the extensive study of fairness, e ciency was at the centpsof the theory of
resource allocation. Theutilitarian welfare of an allocation X is  ;, Vi(Xj), by
maximizing which the total happiness of the agents is maximized. Theegalitarian
welfare is minjz fvi(X;)g, by maximizing which the smallest happiness is maxi-
mized. A compromise between utilitarian and egalitarian welfare isNash welfare
i.e., i2nVi(Xi). We say an allocation X Pareto dominates another allocation X ©
if vi(Xi) vi(X9foralli2N andvi(X;)>v;(X9 for somei. An allocation is
Pareto optimal (PO) if it is not Pareto dominated by any other allocation.

Naturally, the fairness of an allocation can be evaluated by its egalitarian we
fare, as in the Santa Claus problem (Bansal and Sviridenko, 2006) and the load
balancing problem (Lenstra et al., 1990). However, in practice, since agésm may
have heterogeneous valuations, the max-min objective is not enough to dafy all
of them. Thus, various notions were proposed to characterize the fairrss of alloca-
tions, including envy-freeness (EF) (Foley, 1966), proportionality (PROP) (Stein-
haus, 1948) and equitability (EQ) (Dubins and Spanier, 1961). The relationslips
among these notions are discussed by Amanatidis et al. (2018), Sun et al. (2021)
and Chakraborty et al. (2021). Given the vast literature on di erent fairne ss no-
tions, this survey only focuses on two of the most widely studied, amely EF and
PROP.

3. ENVY-FREENESS

We rst consider envy-freeness, the study of which dates back to éley (1966) and
Tinbergen (1930), and its relaxations.

De nition 1 EF. For the allocation of items (goods or chores), an allocationX
is envy-free (EF) if for any two agentsi;j 2 N, we havev;(X;) vi(Xj).

The problem of checking whether a given instance admits an EF allocatin is
NP-complete even forf 0; 1g- or f0; 1g-valued instances (Aziz et al., 2015; Bhaskar
et al., 2021). Moreover, the example of allocating a single item betweemi agents
de es any bounded multiplicative approximation of EF, and thus researchers turn
their attention to additive approximations. Two of the most popular ones are
envy-free up to one item (EF1) and envy-free up to any item (EFX).
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The notion of EF1 was rst studied for the allocation of goods by Lipton et al.
(2004), which allows an agent to envy another agent but requires that the eny can
be eliminated by removing an item from the envied agent's bundle. "his notion
naturally extends to chores by removing an item from the envious agerns bundle.
For both goods and chores, EF1 allocations always exist and can be e ciefy
computed by the Round Robin algorithm; see Section 5.

De nition 2 -EF1. For any 0, an allocation X is -approximate envy-free
up to one item ( -EF1) if for any i;j 2 N, there existse 2 X; [ X; such that
Vi(Xi € vi(Xj €. When =1, the allocation is EF1.

As with EF1, the EFX relaxation was proposed for the allocation of goods, by
Caragiannis et al. (2019b). Informally speaking, the notion of EFX strengthens
the fairness by requiring that the envy between two agents can beleninated by
removing any item owned by these two agents.

De nition 3 -EFX. For any 0, an allocation X for goods (resp. chores)
is -approximate envy-free up to any item ( -EFX) if for any i;j 2 N and any
e2 X; (resp. e2 Xji), vi(Xji) Vi(Xj € (resp. vi(Xi € Vi (Xj)). When

=1, the allocation is EFX.

Unlike the case of EF1 allocations, the existence of EFX allocations mains un-
known. For the case of goods, it was shown by Plaut and Roughgarden (2020) that
EFX allocations exist in some special cases: (1) identical (combinatoai) valua-
tions, (2) IDO additive valuations, and (3) n = 2. Chaudhury et al. (2020) and
Amanatidis et al. (2021a) further extended the existence of EFX allocatiors to the
cases when (4n = 3, and (5) bi-valued valuations. In contrast to the case of goods,
the chores counterpart is much less well studied. EFX allocationsdr chores are
known to exist only for a few special cases, e.g., IDO instances (Li etl., 2022) and
leveled preference instances (Gafni et al., 2021). The existence ofK allocations
for chores remains unknown even fon = 3 agents or bi-valued instance.

Open Problem 1. Do EFX allocations always exist (for both goods and chores)?

While the existence of EFX allocations remains unknown for the genexl cases,
there are fruitful results regarding EFX partial allocations (where unallocated items
are assumed to be donated to a&harity) and approximation of EFX allocations.

Since allocating nothing to the agents is trivially EFX, researchersare interested
in nding EFX partial allocations with high e ciency. Caragiannis et al. (2019a)
showed that there exists an EFX partial allocation achieving half of the maximum
Nash welfare. Chaudhury et al. (2021d) proposed a pseudo-polynomial time al-
gorithm that computes an EFX partial allocation with at most n 1 unallocated
items under which no agent envies the charity. This result was impoved by Berger
et al. (2021), who showed that there is an EFX allocation with at most a single
unallocated item forn =4, and n 2 unallocated items forn 5.

There are also results that aim at computing approximately EFX allocations.
Plaut and Roughgarden (2020) showed that every instance (even with subadtive
valuations) admits a 0:5-EFX allocation. The approximation ratio was improved
to 0:618 under additive valuations by a polynomial time algorithm proposed by
Amanatidis et al. (2020). Chaudhury et al. (2021b) proposed a polynomial time
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algorithm that computes a (1  )-EFX allocation with o(n) unallocated items and
high Nash welfare. For the allocation of chores, only anO(n?) approximation of
EFX is known to exist (Zhou and Wu, 2021).

4. PROPORTIONALITY AND MAXIMIN SHARE

Proportionality (PROP) was proposed by Steinhaus (1948), and is the most wiely
studied threshold-based solution concept. PROP is weaker than EF uder additive
valuations.

De nition 4 PROP. An allocation X is proportional (PROP) if for every agent
i 2 N, we havev;(X;) PROR, wherePROR =(1=n) v;(M).

For divisible goods and normalized valuations, the items can be allocatk such
that every agent has value at least £n, which is not true for indivisible items. Hill
(1987) studied the worst case guarantee that an agent can have as a function of
and max2ne2m fVi(€)g. With two agents, the chores version is equivalent to the
goods one; but with three or more agents, the equivalence is far from ce, and
may not hold. One drawback of this guarantee is that the value of the funcion
decreases quickly and goes to 0 as max v;(e)g becomes large.

Open Problem 2. For chores, what is the worst case guarantee that an agent
has as a function ofn and the values of the agents?

Maximin Share Fairness. Besides the worst case guarantee studied by Hill (1987),
one popular relaxation of PROP is maximin share fairness, motivated by thefol-
lowing imaginary experiment. If agenti is the mediator and divides all items into
n bundles, the best way to approximate PROP fori is to maximize the smallest
bundle according tov;. Formally, de ne the maximin share (MMS) of i as

MMS;(Min) = max = minfvi(X;)g;

where (M) denotes the set of alln-partitions of M. When M and n are clear
from the context, we write MMS; for short. Note that MMS;  PROR, and the
computation of MMS; is NP-complete.

De nition 5 -MMS. For any 0, an allocation X is -approximate maximin
share fair ( -MMS) if for any i 2 N, we havev; (X;) MMS;. When =1, the
allocation is MMS.

Note that the approximation ratio 1 for goods and 1 for chores. The
de nition of MMS fairness was rst introduced by Budish (2011), based on the
concept of (Moulin, 1990). Unfortunately, it is shown that there exist instances
for which no allocation can ensureMMS; value for every agent for the case of
goods (Kurokawa et al., 2018) and chores (Aziz et al., 2017b). The best known
approximation results are (3=4 + 1=(12n))-MMS for goods (Garg and Taki, 2021)
and 11-9-MMS for chores (Huang and Lu, 2021). The best known negative results
are that 3940 for goods and for 44=43 for chores by Feige et al. (2021).

Open Problem 3. What are the best possible approximation ratios of MMS al-
locations (for both goods and chores)?
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More Solution Concepts. Motivated by the de nition of MMS, Caragiannis et al.
(2019b) proposedpairwise MMS (PMMS) and Barman et al. (2018a) proposed
groupwise MMS (GMMS). Informally, PMMS is similar to MMS, but instead re-
quires that the allocation is MMS for the instance induced by any two agets.
GMMS generalizes both MMS and PMMS and requires that the allocation is MS
for the instance induced by any subset of agents. We refer the readeits, e.g.,
(Caragiannis et al., 2019b; Barman et al., 2018a; Amanatidis et al., 2020), for more
detailed discussions, and we summarize the main open problem as follsw

Open Problem 4. Do PMMS allocations always exists? What is the best pos-
sible approximation of GMMS?

Finally, similar to EF1 and EFX, we can relax PROP to PROP1 and PROPX.
It is known that a PROP1 allocation always exists and can be found in polyniomial
time when the items are goods (Conitzer et al., 2017; Barman and Krishnamuhy,
2019), chores (Branzei and Sandomirskiy, 2019) or mixture of goods and chores
(Aziz et al., 2020b). Regarding PROPX, when items are goods, PROPX allocatins
may not exist (Moulin, 2018; Aziz et al., 2020b). However, when items are chog
PROPX allocations exist and can be found e ciently (Moulin, 2018; Li et al.,
2022). Recently, Baklanov et al. (2021) further proposed PROPm for goods that
sits between PROP1 and PROPX, and is guaranteed to exist.

5. ALGORITHMS AND COMMON TECHNIQUES

In this section, we introduce the techniques to design fair alloation algorithms. Due
to the vast literature, we choose some of the most commonly used and powel
ones that are also the basis of more complicated algorithms.

5.1 Divide-and-Choose

Divide-and-Choose is one of the most classic allocation algorithms. The gbrithm

is very useful and intuitive when there are only two agents. The ida is to let the

rst agent partition the items into two bundles and the other agent cho ose her
preferred bundle. The remaining bundle is allocated to the rst agent, and thus
her best strategy is to maximize the value of the smaller bundle, i.e

(X1;X32) 2 arg(sl;sgr;éalxz(wI ) minfvy(S1); vi(S2)a:
Plaut and Roughgarden (2020) proved that (X 1; X ;) is always MMS and EFX to the
rst agent if we break ties by maximizing the size of the smaller bunde in (X1; X3),
which they term the leximin++ allocation. This result holds for any number of
agents, which implies the existence of EFX allocations for the case ofiéentical
valuations. Since the second agent obtains her preferred bundle inX(;; X5), the
allocation is EF to her. Therefore, with two agents, Divide-and-Chaose algorithm
returns an allocation that is MMS and EFX.

5.2 Adjusted-Winner

Adjusted-Winner is another widely used algorithm for the two-agent case(Brams
and Taylor, 1996). The idea is to sort the items according to the ratios betveen
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the utilities that they yield for the two agents, i.e.,

vi(l)  wi(2) vi(m)

V(1) v2(2) Va(m)’
and let agent 1 choose a minimal set of consecutive items for which shie EF1
starting from left (the remaining items are given to agent 2). The advantage is that

it ensures high social welfare between two agents (Bei et al., 2021c). Thallocation
is EF1 but not necessarily MMS or EFX.

5.3 Sequential Allocation and Round-Robin

A general class of algorithms that are also suitable for a distributed impémenta-
tion is that of sequential-picking allocation (Brams and Taylor, 2000), which was
formally studied in a general and systematic way by Bouveret and Lang (2011).
Under these methods, agents have a sequence of turns to pick theimost preferred
item that is still available. A popular sequence protocol is theRound-Robin, where
the picking sequence repeats the pattern 1 ::;n. The Round-Robin algorithm
produces allocations that are EF1 (but not necessarily EFX) for both good and
chored, but not for mixtures of them. For this, Aziz et al. (2020b) proposed the
double Round-Robin method that computes EF1 allocations for mixture ofgoods
and chores. Amanatidis et al. (2016) and Aziz et al. (2020a) designed more involved
picking sequences to approximate MMS fairness, for goods and choresspectively.

5.4 Envy-cycle Elimination

The Envy-cycle Elimination algorithm is inherently a greedy algorithm, where in
each round a new item is assigned to the agent who is at a disadvantage for good
or advantage for chores (Lipton et al., 2004). The main technique of the algorithm
is to ensure the existence of an agent that is not envied (for goods) or nagnvious
(for chores) by trading items among agents. We use goods as an illustrationThe
algorithm is based on anenvy graph where the nodes correspond to agents and
there is an edge from agent to agentj if i is envious ofj's bundle. The algorithm
works by assigning, at each step, an unassigned item to an agent who is not éad
by any other agents, i.e., a node with in-degree 0 in the envy graph. Ifio such agent
exists, the graph must contain a directed cycle. Then the cycle cate resolved by
exchanging the bundles of items along the cycle, i.e., an agent in theycle gets
the bundle of the agent she points to. The algorithm terminates when all fems
are allocated and outputs an EF1 allocation for arbitrary monotone combinatorial
valuation functions (Lipton et al., 2004).

The algorithm and its adaptations are very widely studied, combining with which
stronger fairness notions can also be satis ed. For example, the algorithnitself en-
sures EFX (Plaut and Roughgarden, 2020) and 23-MMS (Barman and Krishna-
murthy, 2020) for IDO instances. With more involved preprocessing pocedures, it
can ensure 0.618-EFX, 0.553-GMMS, 0.667-PMMS and EF1 simultaneously (Ama-
natidis et al., 2020). For chores, it is shown in (Barman and Krishnamurthy, 2020)

IWhen items are only goods or only chores, there is a larger clas s of protocols ensuring EF1.
This class of protocols uses a recursively balanced sequence in which at any point, the di erence
between the number of turns of any of two agents is at most 1.
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that the returned allocation is 4=3-MMS. However, noted by Bhaskar et al. (2021),
this allocation may not be EF1 if the cycle is resolved arbitrarily. Instead, they
used the top-trading technique (in which each agent only points to tke agent she
envies the most) to preserve EF1. Later, Li et al. (2022) further showed hat with
this technique, the returned allocation is PROPX. We can also obserg the shadow
of the algorithm in more complicated techniques, such as the (group) chagpion
graphs and rainbow cycle number (Chaudhury et al., 2020, 2021b) which enable
stronger existence and approximation results of EFX.

5.5 Bag- lling Algorithms

Bag- lling Algorithms are particularly helpful for threshold-based not ions of fair-
ness like MMS. The idea is to maintain a bag and keep adding items tot iuntil
some agent thinks the bag is good enough (for goods) or about to be too bad to
all agents (for chores). Then the bag is taken away by some satis ed agent @ah
the algorithm repeats the procedure with the remaining items. Thedi culty is to
select a proper threshold for the bag so that the approximation for the aget who
takes away a bag is good and there remains su ciently many (or few) itams for the
remaining agents. With a more careful design and analysis, the approxiwtion ratio
can be improved to 2=3 (Garg et al., 2019) and further better than 3=4 (Garg and
Taki, 2021) for goods, For chores the approximation ratio can be improved to 149
(Huang and Lu, 2021). There are several nice properties regarding MMS fairrss
(Amanatidis et al., 2017b; Garg et al., 2019), e.g., scale invariance and a reduc-
tion to IDO instances. Interestingly, the second property shows hat any algorithm
for approximating MMS allocations for IDO instances applies to general nstances
with the same approximation ratio preserved. Making use of these progrties can
signi cantly simplify the design of algorithms.

5.6 Rounding Fractional Solutions

Although competitive equilibria may not exist for indivisible ite ms, we can rst
compute a market equilibrium by assuming the items are divisibleand then care-
fully round the fractional allocation to an integral one (Barman and Krishnam urthy,
2019; Branzei and Sandomirskiy, 2019; Garg et al., 2021a). This approach is espe-
cially helpful when e ciency is desired along with fairness, e.g, for the computation

of EF1+PO or PROP1+PO allocations for goods (Barman et al., 2018b; Barman
and Krishnamurthy, 2019), EF1+PO allocations for bi-valued chores (Garg etal.,
2021b; Ebadian et al., 2021), PROP1+PO (Aziz et al., 2020b) and approximately
MMS+PO allocations for mixture of goods and chores (Kulkarni et al., 2021).

5.7 Eating Algorithms

The Probabilistic-Serial (PS) algorithm of Bogomolnaia and Moulin (2001) is a
randomized algorithm for allocating indivisible items in an ex-ante EF manner.
Agents eat their most preferred items at a uniform rate and move on to thenext item
when the previous one is consumed. The probability share of an agent for ateim is
the fraction of the item eaten by the agent. In recent works (Freeman etal., 2020;
Aziz, 2020b), researchers have sought allocation algorithms that simultanecly
satisfy ex-ante EF and ex-post EF1 for the allocation of indivisible tems that are
goods or chores. In particular, the PS-lottery method was proposed thaprovides an
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explicit lottery over a set of EF1 allocations. Aziz and Brandl (2020) presnted an
eating algorithm that is suitable for any type of feasibility constraint an d allocation
problem with ordinal preferences.

6. MORE SOPHISTICATED SETTINGS

The past several years have witnessed the emergence of more sopluated settings
that brought new challenges to the design of fair allocation algorithms, intuding
the mixture of goods and chores, weighted agents, partial information and geeral
valuations. In the following, we review their models, as well as the arresponding
results and open problems.

6.1 Mixture of Goods and Chores

The general case when items are mixture of goods and chores has recentigen
studied in (Bogomolnaia et al., 2017, 2019; Aziz et al., 2020b, 2022). This model is
particularly interesting because it includes the typical setting when the valuations
are not monotone. Aziz et al. (2022) proved that a double Round Robin algorithm
is able to compute an EF1 allocation for any number of agents, and a generalide
adjusted winner algorithm can nd an EF1 and PO allocation for two agents. A
natural open question is whether PO and EF1 allocations exist for arbitary num-
ber of agents. Recently, Aziz et al. (2020b) and Kulkarni et al. (2021) designed
algorithms that compute PROP1+PO or approximately MMS+PO allocations, r e-
spectively. More generally, it is an intriguing future research drection to study the
fair allocation problem under other non-monotonic valuations.

6.2 Asymmetric Agents

For most of the aforementioned research works, the agents are assumed to bgm-
metric in the sense of taking the same share in the system. Motivatetdy real-world
scenarios where people in leadership positions take more responsitdés, some re-
cent works studied the fair treatment of non-equals. The de nitions of envy-freeness
and maximin share fairness have been adapted to the weighted settindsy Farhadi
et al. (2019), Aziz et al. (2019a) and Chakraborty et al. (2020). Regarding goods,
it is shown by Farhadi et al. (2019) that the best approximation ratio for weighted
MMS is ( n) and by Chakraborty et al. (2020) that weighted EF1 allocations ex-
ist. Regarding chores, although weighted MMS was studied by Aziz et al. Z019a),
the best approximation ratio and the existence of weighted EF1 allocabns are
still unknown. Novel fairness notions, such as AnyPrice share and-out-of-d max-
imin share, were proposed and studied by Babaio et al. (2021a,b) which highght
di erent perspectives of the weighted setting.

Open Problem 5.  What are the best possible approximations for these weighted
fairness notions? Do weighted EF1 allocations exist for chores?

6.3 With Monetary Transfers

Since fairness notion like envy-freeness cannot be satis ed exagtlthere are works
studying how to use payments or subsidies to compensate agents andhéaeve fair-
ness accordingly (Halpern and Shah, 2019; Brustle et al., 2020). The problem has
been extensively considered in the economics literature undete context of rent
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division problems (Edward Su, 1999). Halpern and Shah (2019) aimed at bounding
the amount of external subsidies when the marginal value of each item is amost
one for every agent, and Brustle et al. (2020) proved that at most one unit of sub
sidies per agent is su cient to guarantee the existence of an envy-fe allocation.
Caragiannis and loannidis (2021) studied the optimization problem of computirg
allocations that are what they term envy-freeable using the minimumamount of
subsidies, and designed a fully polynomial time approximation schemfor instances
with a constant number of agents. A more general problem is the fair allocabn of
mixture of divisible and indivisible items, where the divisible item can be viewed
as heterogeneous subsidies (Bei et al., 2021a,b).

6.4 Partial Information

Researchers also care about fair allocation with partial information, and paticu-
larly the ordinal preference setting, where the algorithm only knowseach agent's
ranking over all items without the cardinal values. For goods, the bes possible
approximation ratio of MMS allocations using only ordinal preferences $ (log n)
by Amanatidis et al. (2016) and Halpern and Shah (2021); for chores, constant
upper and lower bounds are proved by Aziz et al. (2020a). Recently, Hosseist al.
(2021) proposed the ordinal MMS fairness, which is more robust to cardinal alues.
Another interesting question is to investigate the query complexty of unknown val-
uations. In this model the algorithms can access the valuations by makingjueries
to an oracle. Oh et al. (2021) proved that (log m) queries su ces to de ne an
algorithm that returns EF1 allocations. In general, it is an important research
direction to explore how much knowledge is su cient to design a far allocation
algorithm.

Open Problem 6. Explore the trade-o between the amount of knowledge an
algorithm has and the fairness guarantee it ensures.

6.5 General Valuations

Besides additive valuations, we may have more complex and combinatorigirefer-
ences that involve substitutabilities and complementarities in the items, including
submodular, XOS, and subadditive valuations. Formal de nitions and discussions
of these valuations can be found in (Nisan, 2000). Some of the results we have
discussed in previous sections also apply to general valuations. For axple, the
envy-cycle elimination algorithm returns an EF1 allocation for monotone @mbina-
torial valuations (Lipton et al., 2004). Plaut and Roughgarden (2020) proved the
existence of 05-EFX allocations for subadditive valuations. Regarding MMS, Bar-
man and Krishnamurthy (2020) and Ghodsi et al. (2018) designed polynomial time
algorithms to compute constant-approximate allocations for submodular anl XOS
valuations, and O(log n)-approximate for subadditive valuations. Chaudhury et al.
(2021c) further designed algorithms to compute allocations that are approxnately
EFX and simultaneously achieveO(n)-approximation to the maximum Nash wel-
fare for subadditive valuations.

Open Problem 7. Can the approximation ratios regarding EFX and MMS for
subadditive valuations be improved?
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In addition to the above settings, there are more in the literature, such ascon-
strained resources(Suksompong, 2021)public resources(Conitzer et al., 2017; Fain
et al., 2018), group fairness(Suksompong, 2018; Conitzer et al., 2019), andynamic
settings (Aleksandrov and Walsh, 2020). We refer the readers to the mentioned
works/surveys and the references therein for more details.

7. BEYOND FAIRNESS: EFFICIENCY AND INCENTIVES

Beyond achieving fairness alone, more and more attention is paid to invéigating
the extent to which we can design algorithms to compute allocations thatare fair
and simultaneously satisfy other properties, such as e ciency and tuthfulness.

7.1 Computing Fair and E cient Allocations

Although nding an allocation that maximizes the utilitarian welfare is s traightfor-
ward (by allocating each item to the agent who has highest value), nding such an
allocation within fair allocations is NP-hard (Barman et al., 2019). One interest-
ing research question here is to bound the utilitarian welfare loss Y enforcing the
allocations to be fair, i.e., the price of fairness (Bei et al., 2021c; Barman et al.,
2020). Besides utilitarian welfare, a large body of works studied the cormgtibility
between fairness notions and the weaker e ciency notion of PO. For the ase of
goods, Caragiannis et al. (2019b) proved that the allocation that maximizes Nash
welfare is EF1 and PO. Later, Barman et al. (2018b) designed a pseudopolyno-
mial time algorithm for computing EF1+PO allocations. Truly polynomial ti me
algorithms for the problem remain unknown. Barman and Krishnamurthy (2019)
designed a polynomial time algorithm for computing PROP1+PO allocations. Re-
garding the stronger fairness notion of EFX, Amanatidis et al. (2021a) proved ttat
for bi-valued valuations, the allocation that maximizes Nash welfare is EFX+PO,
and Garg and Murhekar (2021) improved this result by giving a polynomial time
algorithm. Further, Garg and Murhekar (2021) proved that if the valuations h ave
three di erent values, EFX+PO allocations may not exist. In contrast , Hosseini
et al. (2021) proved that if the valuations are lexicographic, EFX+PO allocations
exist and can be found in polynomial time.

Open Problem 8. Can EF1+PO allocations be computed in truly polynomial
time?

For chores, most of the problems are still open. The good news is that PRB1+PO
allocations can be computed in polynomial time, even if the items are amixture
of goods and chores (Aziz et al., 2020b). However, for EF1 and PROPX, their
compatibility with PO are still unknown. Ebadian et al. (2021) and Garg et al .
(2021b) proved that for bi-valued instances, EF1+PO allocations always eist and
can be found e ciently, which are the only exceptions so far.

Open Problem 9. Do EF1/PROPX + PO allocations always exist for chores?

7.2 Being Fair for Strategic Agents

Fair allocation problems are often faced bystrategic agents in real-life scenarios,
where an agent may intentionally misreport her values for the items tomanipulate
the outcome of the algorithm and obtain a bundle of higher value. The goal is
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to design truthful algorithms in which agents maximize their utilities by reporting
true preferences. For two agents, Amanatidis et al. (2017a) gave a completéar-
acterization of truthful algorithms, using which we have the tight approximation
bounds for solution concepts such as EF1 and MMS. For an arbitrary number of
agents, Amanatidis et al. (2016) and Aziz et al. (2019b) designed truthful approx-
imation algorithms but the tight bounds are still unknown. The aforementioned
works consider the social environment where monetary transfers areat allowed.
With monetary transfers, polynomial time truthful mechanisms were designed by
Barman et al. (2019) for single-parameter valuations, which maximize the sdal
welfare and approximately satisfy fairness notions such as MMS and EF1.

Open Problem 10. What are the best possible approximation ratios of EF1 and
MMS for truthful algorithms with an arbitrary number of agents?

Another game-theoretic research agenda is to investigate the agents' sttegic
behaviours in algorithms that may not be truthful. For example, Amanatid is et al.
(2021b) proved that in the Round-Robin algorithm, the allocations induced by
pure Nash equilibria are always EF1 (regarding the true values). Boueret and
Lang (2014) and Aziz et al. (2017a) studied the strategic setting in general seque
tial allocation algorithms. It is interesting to study agents' behaviours in other
algorithms and with other fairness notions.
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The Nisan-Ronen conjecture states that no truthful mechani sm for makespan-minimization when
allocating m tasks to n unrelated machines can have approximation ratio less than n. Over more
than two decades since its formulation, little progress has been made in resolving it and the best
known lower bound was a srgnall constant. This note gives an ove rview of our recent paper that
gives a lower bound of 1+ " n 1.
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Mechanism design, a main branch of Game Theory and Microeconomics, stieb
a special class of algorithms, called mechanisms. Unlike traditional algdtims
that get their input from a single user, mechanisms solicit the inpu from di erent
participants (called agents, players, bidders), in the form of preérences over the
possible outputs (outcomes). The di culty of designing such algorithms stems from
the fact that the actual preferences of the participants are private irformation,
unknown to the algorithm. The participants are assumed to be utility maximisers
who will provide some input that suits their objective and may di er from their
true preferences. Atruthful mechanism provides incentives such that a truthful
input is the best action for each participant.

The question is what kind of problems can be solved within this framewrk. In
their seminal paper that launched the eld of algorithmic mechanism design, Nisan
and Ronen [Nisan and Ronen 2001] proposed the scheduling problem on unrelated
machines as a central problem to capture the algorithmic and informationtheoretic
aspects of mechanism design. In the classical form of the schedulinggblem, which
has been extensively studied from the algorithmic perspective,ttere aren machines
that process a set ofm tasks; each machinei takes time t; to process taskj .
The objective of the algorithm is to allocate each task to a machine in ordeto
minimize the makespan, i.e., the maximum completion time over all nachines. In
the mechanism design setting, each machine provides as input its pcessing time
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for each task. The selection by Nisan and Ronen of this version of the schaling
problem to study the limitations that truthfulness imposes on algorithm design
was a masterstroke, because it turned out to be an extremely rich andhallenging
setting.

Nisan and Ronen applied the VCG mechanism [Nisan et al. 2007], the most
successful generic machinery in mechanism design, which truthfy implements the
outcome that maximizes the social welfare. In the case of schedulinghé allocation
of the VCG is the greedy allocation: each task is independently assigrd to the
machine with minimum processing time. This mechanism is truttful, but has poor
approximation ratio, n. They boldly conjectured that this is the best guarantee that
can be achieved by any deterministic (polynomial-time or not) truthful mechanism.
The Nisan-Ronen conjecture has been a central problem in algorithmic mahanism
design in the last two decades. This note is about a recent paper [Chstodoulou
et al. 2021a] that made progress towards this conjecture:

Theorem 1. Thete is no deterministic truthful mechanism with approximation
ratio better than 1+ n 1 for the problem of schedulingh unrelated machines.

This bound is information-theoretic in the sense that it holds for all deterministic
mechanisms, regardless of their running time.

It is well known [Saks and Yu 2005; Archer and Kleinberg 2008; Bikhchandani
et al. 2006] that a mechanism is truthful if its allocation function is monotone in the
values of each machine. Monotonicity in one dimension (i.e., a single t&} is the
usual notion of monotonicity of the allocation function, and for two or more dimen-
sions, it takes a particular very natural form that is tightly related to the theory of
convex functions. Thus one can restate the above theorem as \nomonotone algo-
rithm, polynomial-time or not, has approximation ratio less than 1+ ~ n 1 for the
problem of schedulingn unrelated machines." In contrast, the approximation ratio
for the usual (non-monotone) class of algorithms is trivially 1, for exponetial-time
algorithms, and at most 2 for polynomial-time ones [Lenstra et al. 1990].

This is the rst non-constant lower bound of the Nisan-Ronen problem. Previous
results include a lower bound of 2 [Nisan and Ronen 2001], which was impred to
2:41 [Christodoulou et al. 2009], and later to 261 [Koutsoupias and Vidali 2012], as
well as recent improvements to 2755 [Giannakopoulos et al. 2020] and to 3 [Dobzin-
ski and Shaulker 2020]. Some ideas used in the proof of the above theorem trs
appeared in a rEcent publication [Christodoulou et al. 2020], which estalished a
lower bound of n 1 for all deterministic truthful mechanisms, when the cost
of processing a subset of tasks is given by a submodular (or supermaldr) set
function, instead of an additive function of the standard scheduling &tting.

A crucial role in the proof of the above theorem is played by use of spéa in-
puts in which each task can be reasonably allocated to only two machinesrThis is
achieved by setting the values of the other machines su ciently high so that every
algorithm with relatively small approximation ratio will avoid them. W ith this, we
focus on a special case of the scheduling problem, thaulti-graph scheduling prob-
lem [Christodoulou et al. 2021b]: the input is a multi-graph of n nodes (machines)
and each edge (task) has two values, one value for each of its nodes; the thagism
must allocate each edge to one of its nodes. Actually the proof of the abevtheorem
employs multi-stars. Using graphs instead of general instances allows us to take
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advantage of a useful characterization of mechanisms for 2 machines; no $ugood
characterization is known for 3 or more machines.

1. OUTLINE OF THE PROOF
We provide an outline for a slightly worse' lower bound ofIO n 1.

1.1 The construction

We consider instances, withn players (machines) andm tasks that are partitioned
into n 1 clustersCq;:::;C, 1. Each cluster C; contains ~ tasks and is associated
with player i 2 [n 1]; the number * of tasks per cluster needs to be at least
exponential in n for the proof to work. The processing time for a taskj 2 Cj,

i 2 [n 1], is described by two values:t; of player 0 ands; of player i; these values
are usually in (0; 1]. The processing time of every other playek 62 D;ig for a task

j 2 Cj is su ciently high, so that no mechanism with bounded approximation ratio
would ever allocatej to them. Hence, we describe an instanc& by only two values
[tj;sj] pertaskj.

1.2 De nitions

The proof relies on a characterization of 2 2 mechanisms [Christodoulou et al.
2020] that concerns two players and two tasks. Although we consider a mulplayer
setting, we are able to use it, by xing all other values except for thevalues of two
tasks p and p° of the same cluster (which we call siblings). We refer to this set
of instances as a [f; p)-slice; the resulting allocation for p;p° corresponds to an
allocation of a 2 2 truthful mechanism.

The central part of the argument that shows the lower bound, uses an indction
on the number k of clusters. The values of the tasks in the remainingh k 1
clusters, which we call trivial clusters, play a limited role, but it is important that
they do not a ect substantially the approximation ratio. Intuitively , a cluster is
called trivial if the optimal allocation for all tasks of the cluster has cost su ciently
small (say at mostn 2).

We usually select a single task from each non-trivial cluster, and weall such a
selection of tasksregular. A set of instances is calledstandard for a set of clustersC
if the value of every taskj 2 [C is [t = 0; s; = 1], and the remaining clusters are
trivial. The following de nition of a good set of taskss at the heart of the proof.

De nition , 2 Good set of tasks { bad task Consider a truthful mechanism and
let =1=n 1. Fix a standard instance T for a set of k clusters C, and a

1we expose the main ideas of the proof, and try to provide intui tion, hiding intricate details in
our de nitions and statements which inevitably sacrices t  he rigour of many of the statements.
We refer the reader to tBe full version of our paper for comple te arguments and for the slightly
improved bound of 1 + 1.

20ur goal is to communicate the high level idea, as a result thi s de nition is oversimpli ed and far
from the more intricate de nition that we have in the full ver sion. For example, what we actually
need is that there exists a vector V of open intervals (around the values of the tasks in P) such
that the mechanism allocates all tasks in P to player O for every instance in the set. We call such
sets of instances V -perturbations { and witness of goodness in particular {, which are crucial for
correctness and which we consider an important conceptual ¢ ontribution of our work.
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when we replace the value of every tasky, 2 P with [t; = ;s ; = 1], the mecha-
nism allocatesall tasks in P to player 0. If the latter property is not satis ed, we
call P a bad set. A singleton bad set is simply calledbad task (See Fig 1 for an
illustration.)

= O
= O
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2 3
0 00000O00O
1

2
_ _ °=§ 11
Tg 111 é T 111
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Fig. 1. T gives an example of a good setP = f3;4; 7g of size 3. Indeed, tasks 32 C1;42 C5;72 C3
are regular, as they belong to distinct clusters, and have va lues [tj = ;s j = 1]. The other values
are trivial, and the mechanism allocates the tasks in P to the 0 player (indicated with > ). In T9,
task 2 is a bad task, as it has values [to = ;s 2 = 1], all other tasks are trivial, and the task is
allocated to player 1.

Lemma 3 (Main Lemma). At least one of the following two properties hold for
every truthful mechanism:

(i) there exists a bad task
(i) there exists a good set ofn 1 tasks.

The Main Lemma immediately implies the desired lower bound on the aproxi-
mation ratio. The existence of a bad task (Property (i) ) means that there is only
one non-trivial task j with values [t; = ; s ; = 1] and the mechanism does not give
it to player 0, which would be H1e optimal decision. In this case, theapproximation
ratio is approximately 1= = " n 1. Finally, a good set ofn 1 tasks (Property
(i) ) has approximation ratio (n 1) = n 1, giving the desired result.

To obtain a proof of the Main Lemma, we show that there exists a good set ok
tasks for everyk 2 [n 1], by induction on k. We start with some regular set of
k tasks, which we call potentially-good set, such that all its subsets ofk 1 tasks
are good To satisfy all the requirements in the proof, the precise struture of a
potentially-good set of tasks is complicated and it is detailed in the @ll version of
our paper.

1.3 Outline of the proof of the Main Lemma

We now give a rough outline of the argument that establishes the Main Lemma
(Lemma 3). We consider regular instancesl for sets ofk clusters C. If there is a
bad task, then we are done. Hence, we show that otherwise, fdc= n 1 there is
a good set of tasks. By induction onk, we show the stronger claim that there are
many sets of tasks that are gogdthe base caseK = 1) being true due to the fact
that there are no bad tasks.

We use a probabilistic argument to show that the probability b, of a random

conclude thath, 1 < 1, which establishes the existence of a good set of 1 tasks.
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Showing thathy is small. We show that by is small by establishing the following
two facts:

Fact b. If P = (ps;:::;p«) is a potentially-good set of tasks, eitherP is good
itself or (P «;p?) is good with su ciently high probability, where p? is a random
sibling of px. Roughly speaking, eitherP is good oralmost all other sets are good
(with exponentially small probability of the negative event).

Taking into account that b = 0, since there are no bad tasks, we can combine
these two facts to get that by is bounded above by a decreasing function on the
number  of tasks per cluster. By selecting to be su ciently large, this establishes
that b, 1< 1.

Showing Fact b. The dicult part is to establish the second of the above two
facts (Fact b). Let's assume that P is potentially-good but not good. We show
that (P «;pP) is good for many pd's, as follows:

This essentially follows from the de nition of potentially-good and weak mono-
tonicity.
|Let pf;‘ be a sibling of px and consider the @k;pﬁ)—slice mechanism. This is
exactly the point where we exploit the 2 2 characterization. The proof pro-
ceeds by treating carefully all possible cases, as they appear in théaracteriza-
tion [Christodoulou et al. 2020]:
(1) A ne minimizers: we show that the mechanism is not an a ne minimizer
almost surely
(2) Relaxed a ne minimizers: we show that the probability that the mech-
anism is a relaxed a ne minimizer is at most 2n?="
(3) 1-dimensional and constant mechanisms: we show that 1-dimensional
and constant mechanisms do not occur, or the approximation ratio is high
(4) Task independent or relaxed task independent mechanisms: we
show that if the mechanism is task independent or relaxed task indegn-
dent for each ofk appropriately selected random instances from the witness,
then (P «;p?) is good
|We conclude that for a random sibling p?, the mechanism must be either task
independent or relaxed task independent for all thesd instances with probability
atleast1 k2n2=";therefore (P «;p?) is good with probability at least1  2n3=".

The rst item, i.e., to show that a ne minimizers are sparse, expl oits an in-
teresting use of (potential-)goodness and linearity, the latter béng an important
implication of a ne maximization. The proof of relaxed a ne minimizers u ses the
same machinery, but it has an extra layer of di culty, as such mechanisms may
have non-linear parts which are hard to handle. In fact, we might have aposi-
tive probability (at most 2 n3=") to pick a wrong sibling p{ due to this de ciency.
The proof of the last item about task independent and relaxed task indepndent
mechanisms has very similar avor. It is essentially this part that t akes away the
complications that arise from having to deal with an additive domain.
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2. CONCLUSION

The major problem left open is to settle the Nisan-Ronen conjecture.We expect
the techniques of this work to be helpful in this direction. The case of random-
ized or fractional mechanisms appears also very challenging; the best &wn lower
bound of the approximation ratio is 2 [Mu'alem and Schapira 2018; Christodolou
et al. 2010], embarrassingly lower than the best known upper boundn + 1) =2.
The bottleneck of applying the techniques of the current work to these variants
appears to be the lack of a good characterization of 2 2 fractional mechanisms.
Finally, although the result of this work indicates that mechanisms corstitute a
limited subclass of allocation algorithms, a more direct demonstration wuld be to
nd a useful characterization of mechanisms for the domain of schedulig and its
generalizations.
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Many policies allocate harms or bene ts that are  uncertain in nature: they produce distributions
over the population in which individuals have di erent prob  abilities of incurring harm or ben-
et. Comparing di erent policies thus involves a compariso  n of their corresponding probability
distributions, and we observe that in many instances the pol icies selected in practice are hard to
explain by preferences based only on the expected value of th e total harm or bene t they produce.
In cases where the expected value analysis is not a su cient e xplanatory framework, what would
be a reasonable model for societal preferences over these distributions? Here we investigate expla-
nations based on the framework of probability weighting from the behavioral sciences, which over
several decades has identi ed systematic biases in how peop le perceive probabilities. We show
that probability weighting can be used to make predictions a bout preferences over probabilistic

distributions of harm and bene t that function quite di ere ntly from expected-value analysis, and
in a number of cases provide potential explanations for poli cy preferences that appear hard to
motivate by other means. In particular, we identify optimal policies for minimizing perceived

total harm and maximizing perceived total bene t that take t he distorting e ects of probability
weighting into account, and we discuss a number of real-worl d policies that resemble such alloca-
tional strategies. Our analysis does not provide specic re commendations for policy choices, but
is instead interpretive in nature, seeking to describe obse rved phenomena in policy choices.
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General Terms: Economics, Human factors, Theory
Additional Key Words and Phrases: probability weighting, u  ncertain allocations, human percep-
tions, harm minimization, bene t maximization

1. INTRODUCTION

Societies frequently wrestle with tough decisions regarding thallocation of bene ts
or burdens among their populations (see, e.g., [Calabresi and Bobbitt 1978; ¥cusi
2018]). These decisions|particularly those that involve harm|are immense ly dif-
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cult yet often unavoidable. As Sunstein points out, governments regularly pursue
policies that lead to harms, including death, among the public: \If government
allows new highways to be built, it will know that people will diemthose highways;
if government allows new power plants to be built, it will know that soepeople will
die from the resulting pollution. [...] Of course it would make sense, in most or
all of these domains, to take extra steps to reduce risks. But thatrgposition does
not support the implausible claim that we should disapprove, fro the moral point
of view, of any action taken when deaths are foreseeable[Sunstein 2003] These
considerations remain true even when the prospective harms are redad as much
as possible; to the extent that harms remain, we must reason about the ipact of
policies that produce foreseeable harms.

To make matters more complicated, many of these allocations deal iprobabilities
of some outcome occurring: when we raise the speed limit by a certain aant,
for example, we can estimate to some approximate level the number of adenal
tra c fatalities that will result [Farmer 2019], but we can say much less about
who in particular will die. Thus, for matters involving harm, the pol icy process
necessarily involves a set of choices (even if these choices arisdyoimplicitly)
between di erent distributions of harm over the population. For example, policy P
might produce a probability p; that individual i is harmed, while policy Q might
produce a probability ¢ that individual i is harmed, for each individual in the
population. (To keep the discussion simple, we will think about a sngle kind of
\harm" that can befall people as a result of the policy, rather than adding the
complexity of di erent types or degrees of harm.)

How should we compare the two distributions of harm that arise from policesP
and Q? Much of the work that underpins mathematical models in these domains
including many of the loss functions that go into algorithmic decisions tend to be
based on expected cost|the idea that we should favor the policy that produces the
lower expected harm. In our case, policyP produces a sequence of probabilities
(p1; p2; :::; pn) over the n members of the population, and its expected harm is the
sumpy + po + + pn; we can write a similar expression for the probabilities of
harm (qi; ;i ) produced by policy Q.

Of course, real-life policymaking is complex, and it is not clear that ninimization
of expected harm is typically the chief criterion in selecting amormy policy options.
But there is a more basic problem with using expected harm as the ct&rion: many
policy questions about competing distributions of harm begin after weve already
reduced the total amount of harm to a roughly xed, low target level, and so the
debate is among distributions that all have the same expected level diarm. How,
then, should we think about preferences among these competing poligproposals?

1.1 A Real-life Example

We can see the outlines of such debates in a number of settings whererigk of

harm is being allocated across a population. In the policies for draftingpeople
into the military in the United States, for example, the government has considered
a number of di erent implementations for randomizing the selection of inductees.
(Here, required service in the military is the cost, or harm, that is being allocated
according to a probability distribution.) Under a given policy P, individual i would

learn that they had a probability p; of being drafted. Crucially, di cult questions
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about the implementations of draft systems persist regardless of the @sired size of
the military; that is, for a given size of the military, the sum of the d raft probabilities
pi over the population is pinned to this number, but some distributions of these
probabilities have been nonetheless viewed as preferable to ottger

What accounts for these preferences? We note that discussions of reians to the
draft framed uncertainty itself as a cost being borne by members of tke population.
As the U.S. Selective Service System notes, prior to the introdugn of a structured
process for randomization, men knew only that they were eligible to bedrafted
from the time they turned 18 until they reached age 26;\[this] lack of a system
resulted in uncertainty for the potential draftees during the enire time they were
within the draft-eligible age group. All throughout a young man's &ly 20's he
did not know if he would be drafted"[Selective Service System 2020]. The systems
that were subsequently introduced speci ed priority groups accoding to age, which
had the e ect of deliberately producing non-uniform probabilities of being drafted
in any given year; under these systems, some people were selectedhwhigher-
than-average probability and others with lower-than-average probabilty.* Viewed
in terms of distributions, these policy changes had the e ect ofconcentrating the
probabilities more heavily on a subset of the eligible population each gar, rather
than di using the probabilities more evenly across everyone.

The quote from the Selective Service System points out that a proces that
di uses probabilities too widely seems to create unnecessary (@hharmful) levels
of uncertainty; but there are, of course, corresponding objections tat could be
raised to processes that concentrate probabilities too heavily ondo small a group.

An abstraction of these questions would therefore consider multiple pbability
distributions of harm|for example, policy P producing (p1;pz;:::;pn), policy Q
producing (oi; ;:::; o), and perhaps othersjand ask which of these should be
preferred as a choice for society. In posing such questions, we areiged by the belief
that studying reactions to distributions of harm should draw closely on those parts
of the behavioral sciences that have considered how people subjealy evaluate
probabilities. We therefore develop a framework based on the concept @irobability
weighting from behavioral economics.

Our model will allow us to evaluate the Selective Service Systerm argument, and
similar arguments in other domains, at a broad level|the contention that com -
pletely uniform randomization over the draft-eligible population is a sub-optimal
policy because the cumulative level of uncertainty felt by the popuation is unneces-
sarily high. At rst glance, this argument is counter-intuitive: si nce the size of the
military is the same under all the draft policies being consideredjsn't the cumula-
tive level of uncertainty felt by the population also the same under al policies? On
closer inspection, though, we nd that this decision|to shift the pr obabilities in a
non-uniform direction, and to interpret this as reducing cumulative uncertainty|is

1Speci cally, men were drafted according to \priority year, " with the youngest men being drafted

rst. During the year a man was 20 years old, he was in the top pr iority group, with reduced like-

lihood of being called up each subsequent year. Within each gr oup, call-up order was randomized
by lottery according to birthday [Selective Service System  2020]. This prioritization based on a
known random ordering of birthdays served as an additional w ay of concentrating the probabilities

on a subset of the population.
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very much consistent with the predictions of probability weighting.

2. MOTIVATING THE MODEL

We can adapt our discussions about harm allocations|and complex scenarios sut
as the military draft|into a stylized example in which a xed amount of harm must
be allocated across a given population. We will argue that di erent allocaions of
harm have very dierent subjective resonances, and it is these dérences that
behavioral theories of probability weighting aim to illuminate.

Thus, as a thought experiment, consider the following hypothetical example.
Suppose we need to allocate 1 unit of harm among 100 individuals. For simiplty,
let's assume all 100 individuals are equally deserving and willing tdoear the harm.
We might allocate the harm to one speci ¢ person (say, Bob), while givhg the other
99 people certainty that they are not at risklhence the probability dist ribution
(1;0; ;0). Feeling sorry for Bob, we might instead divide the risk between fm
and another member of the population, Chloejand ultimately ip a cointod ecide
which of them is to bear the harm, while the other 98 people are free andlear;
i.e. the distribution (1 =2; 1=2;0; ;0). Or we could have a third person, David,
join Bob and Chloe in the risk pool, lowering the risk for each of them b one-third
(1=3;1=3;1=3; 0; ;0). Finally, we might allocate the risk evenly among all 100
individuals, and select the recipient of the harm by random lottery: (0:01;  ;0:01).

How might a policymaker select among these policies? Each of them, uitiately,
results in the same amount of harm (1 unit) befalling the population, ye they strike
us as intuitively quite di erent. We may consider it blatantly un fair to single Bob
out as a certain victim by concentrating the risk completely on him; and indeed, a
long line of work in psychology on the so-calleddenti able victim e ect suggests
that we tend to nd such outcomes particularly troubling [Jenni and Lo ewenstein
1997]? On the other hand, a random lottery distributes the risk equally among all
100 individuals|but in the interim, it forces  everybodyto worry about their chances
of being harmed. (This is the form of uncertainty, and corresponding pychological
cost, that the Selective Service System was concerned with in ourxample of the
draft lottery.) The second and third options provide intermediate alternatives. In
the second alternative, no one person is harmed witltertainty, while, at the same
time, the smallest possible number of individuals need bear the sk.

The fact that we may prefer some of the above alternatives to others imradiately
suggests that a cost-bene t analysis based on expected harm is not su @nt to
capture our intuitions|since all the options involve the same expected amount of
harm. Likewise, our intuitive reactions to these di erent proposals do not neatly
map onto common concerns with distributive justice, where we tendo worry about
the relative impact of allocations on di erent social groups or subgroups vithin

2Philosophy has also grappled with the observation that we te nd to recoil at the idea of, for
example, harvesting one person's organs to save the lives of ve other people. Such cases reveal
an intuitive distaste for distributions that aim to reduce t he overall amount of harm experienced
by a population by focusing those harms on a small subset of pe ople [Thomson 1976]. Note
that our framework does not apply to these cases because conc entrating costs in these instances
actually reduces the total cost (e.g., reducing the total nu mber of deaths from ve to one); in our
settings, the way a policy allocates harms does not a ect the amount of harm imposed on the
overall population.
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the population, given existing social inequalities. In this case, oureactions have
nothing to do with any details about who Bob, Chloe, and Dave happen to k& or
the social groups to which they belong. What we perceive to be the mordesirable
allocation instead seems to rest on how we perceive the bene ts or hars of being
subject to uncertain outcomes?®

An interpretive analysis: Our intention in exploring people's subjective
perceptions of risk probabilities is, emphatically, not to prescribe a \best" mode of
allocating probabilities of risk, nor to endorse the underlying polcy decisions that
give rise to a need to allocate such risk in the rst place, nor to treat super cially
the variety of other procedural and moral concerns that attend the allocaton of
harms and bene ts to people. Ours is a purelyinterpretive undertaking; we nd
that preferences for certain allocation policies involving probabilties are di cult
to explain unless we take probability weighting into account.

Policy experts disagree about the extent to which cognitive errors oughto be ex-
plicitly incorporated into account in public decision-making. Whil e some consider
it inappropriate to base policies on what are essentially misunderstadings, others
suggest that we might reasonably consider the \psychic bene ts" to thepublic of
protecting against \imaginary" risks [Schneier 2008; Viscusi 2018; Portney 1992;
Pollak 1998]. We stake no claim in this debate; our goal is to explore descriptely
how people's subjective perceptions of probabilitiesmight impact preferences re-
garding such allocations|and how these impacts potentially explain peculiar real-
life allocation policies. In this way, our work follows a style of resarch that seeks
to shed light on observed policy outcomes by linking them to our behaioral un-
derstanding of latent human preferences for certain types of outcomesver others
(see, e.g., [Srivastava et al. 2019; Zhu et al. 2018; Lee et al. 2019] for earlier work
in this genre).

All of this still leaves us with a basic question. We have seen exames so far
(with others to come) of policy-making favoring some level of randomizabn, while
also steering away from completely uniform randomization that would spead risk
of harm di usely across a population. Is there a model that predicts this type
of \intermediate" position that avoids both a concentration of risk on identi able
victims as well as too di use a distribution over the whole population? And can
such a model be derived from known psychological models of human beliar? In
this work we will argue that a preference for these types of intermethte distri-
butions of risk can be derived naturally from the concept ofprobability weighting
one of the most empirically well-grounded human biases studied in belvioral eco-
nomics [Kahneman and Tversky 2013], to which we now turn.

3To put it di erently, the purpose of our work is not to argue that probability weighting tends to
result in distributions that disproportionately harm memb ers of speci c social groups. Rather, we
study human perceptions toward distributions that allocat e the same type of harm unevenly across
otherwise-equal individuals (without specifying their group memberships) . Given the centrality
of probability weighting in the empirical study of behavior  al biases around uncertainty, we believe
that showing how a range of distributional considerations a rises purely from probability weighting
is of interest independent of the possibility of additional  biases.
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2.1 A Model Based on Probability Weighting

Motivated by the premise that understanding people's perceptionsof harm/bene t
allocations are crucial in designing acceptable policies, we posit thatodels that
solely rely on expected value comparisons may miss crucial aspects airhan per-
ceptions toward uncertain allocations|which are in part shaped by probab ility
weighting. As a result, expected value-optimizing algorithms may poduce alloca-
tions that are behaviorally repugnant to people. Our model can partially explain
these reactions using one of the fundamental principles in behaviat sciences. To
our knowledge, our work is the rst to explore the attractiveness of dierent uncer-
tain allocation policies by exploring optimal allocations under probability weighing.
We make several connections between the optimal allocation patterns gigested by
our theory and real-world policy choices that would be otherwise di cul t to explain.

Probability weighting begins from the qualitative observation that people tend
to overweight small probabilities|behaving as though they are larger th an they ac-
tually arejand tend to underweight large probabilities|behaving as thou gh they
are smaller than they actually are. More generally, probability weighting is the
premise that when faced with an uncertain event of probability p, people will tend
to behave with respect to this event|for example, when determin ing risks or eval-
uating gambles involving the event|as though its probability were not p but a
value w(p), the weighted versionof the probability. This weighting function w(p)
has the two properties noted above: thatw(p) is larger than p when p is small,
and w(p) is smaller than p when p is large. If we think in terms of the graph of
w(p) as a function of p, people refer to these properties as the \inverse S-shaped"”
nature of the probability weighting curve. There are a number of di erent models
that derive inverse S-shaped probability weighting curves from shple observations;
one in uential functional form was provided by Prelec [Prelec 1998], wio derived
it from a set of underlying axioms about preferences for di erent types of gambles.
The concept of probability weighting has been invoked to explain a nurber of pe-
culiar behavioral patterns; one of the canonical examples is people's pteipation
in gambling and lotto games [Quiggin 1991; Kahneman 201H.

We use probability weighting here to ask the following basic questin. Suppose
there are r units of harm to be allocated across a population ofn people, and
we are evaluating policies that assign individuali a probability p; of receiving
harm, subject to the constraint that the sum of p; over all individuals i isr. In
the motivating settings discussed so far, it is natural to think of the cost borne by
individual i as the perceived probabilityw(p;)|either because individual i perceives
it this way (via the psychological cost of their own uncertainty) or because the rest
of society views it this way (via our discomfort at the idea that i is an identi able
victim with a perceived probability w(p;) of being harmed). We can therefore ask:
which probability distribution minimizes this total cost, the su m of w(p;) over all

4To elaborate further on this connection, note that the cost o  f buying a lotto ticket is always set
to be higher than the expected bene t (i.e., the likelihood o  f winning times the prize); otherwise,
lottery operators would lose money. Nonetheless, people pa rticipate in these games in large
numbers. Work in behavioral economics has advanced probabi lity weighting as one explanation
for this irrational behavior, via the tendency to over-weig h small probabilities|here, the chance
of winning the lottery [Quiggin 1991; Kahneman 2011].
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individuals i? Notice that this question allows for distinctions among probability
distributions that all produce the same total expected harm for the population:
in particular, all the distributions under consideration have a total expected harm
of r, but they can nevertheless dier substantially in the sum of w(p;) over all
individuals i.

3. OVERVIEW OF FINDINGS

We nd that the distributions minimizing the weighted sum of harm probabilities

w(p;i) in fact correspond to intermediate distributions of the type we have been
discussing qualitatively: distributions that concentrate the ri sk on a subset of the
population, such that each member of the at-risk subset has a probabilit of harm

that is strictly less than 1, while most of the population has a probability of harm

equal to 0. The analysis leading to this conclusion involves some sulaty: sums of
S-shaped functions do not exhibit the nice properties that simplerfunction classes
do, and so minimizing them requires additional complexity in the anaysis.

With this model in place, we can also explore the natural complement ¢ this
dynamic. Our discussion thus far has focused on probabilities dfiarm, but there is
an analogous class of questions about distributing probabilities obenet across a
population|for example, in the availability of opportunities like highe r education
or nancial assistance programs. Suppose there are units of bene t available to
the population as a whole, and we are considering policies that assign a prability
pi that individual i receives the bene t. Which distributions maximize the sum of
w(p;) over all individuals i|that is, maximizing the total perceived benet? As
with risks of harm, we do not argue that such a policy is necessarily désble, only
that it may have added or diminished attractiveness in its perceived impact; to the
extent that such policies are favored in practice, the theory of probaliity weighting
might therefore o er a suggestive description.

We nd that the distributions maximizing this sum of perceived pr obabilities of
bene t are quite di erent from the distributions minimizing th e sum of perceived
probabilities of harm. In particular, when the total available benet r is small
relative to the size of the population under consideration, the maximgzing distribu-
tion is a uniform lottery which assigns all n people a probability of r=n; but as r
increases, the maximizing distribution changes abruptly to one in vhich a subset
of the population receives a portion of the bene t with certainty, and t he rest of
the population is given a uniform lottery for the remainder.

4. IMPLICATIONS

Given that a society developing policy seems to favor some probabili distributions
of harm or bene t over others, even when they have the same expectedalue, it is
natural to ask whether a model based on probability weighting can shedight on the
nature of these preferences. Our modeling activity thus works outvhat the favored
policies would look like if society were seeking to maximize or mimize the total
weighted probability. As we discuss in our work, properties of these rimimizing
and maximizing distributions can be observed in a variety of real-world settings.
We consider a number of allocation policies that have been adopted in pictice
that involve distributions of uncertain harms and bene ts that closely resemble
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what our model suggests are optimal under probability weighting. Becausdhe

attractiveness of these policies is di cult to explain otherwise, we present them as
inductive evidence that probability weighting may be playing a meaningful role in

guiding societal preferences for certain allocations and in determing the actual

distributions of harms and bene ts in society.
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Analyzing Data with Systematic Bias

MANOLIS ZAMPETAKIS
University of California, Berkeley

In many data analysis problems, we only have access to biased data due to some systematic bias
of the data collection procedure. In this letter, we present a general formulation of systematic bias

in data as well as our recent results on how to handle two very f undamental types of systematic

bias that arise frequently in econometric studies: truncation bias and self-selection bias.

Categories and Subject Descriptors: J.4 [ Social and Behavioral Sciences ]: Economics; G.3
[Probability and Statistics ]: Multivariate Statistics

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: bias, truncation, censor ing, self-selection

1. INTRODUCTION

Many problems in data analysis involve the estimation of a property of an urknown
probability distribution P, given a set of nite samples fromP. In some settings,
the goal is to nd a full description of the cumulative distribution f unction or
the probability density function of P (density estimation). In other settings, each
sample has the form §;y) and the goal is to estimate the distribution of y given x
(regression or classi cation).

A key assumption underlying many widely used methods is that we hee access
to samples that are independently and identically distributed (i.i.d.)|throughout
the sampling process, each sample is drawn under the same condit®nit does
not a ect the rest of the samples, and it is guaranteed to be drawn from tte
distribution of interest, P. However, this assumption ignores many challenges in the
data collection procedure that lead tobiasedor corrupted datasets. The presence of
bias or corruption in the data can lead to statistical conclusions that arefallacious
or unfair [Mehrabi et al. 2021]. As a result, identifying the sources of bias or
corruption, and most importantly developing ways to perform statisti cal analysis
even in the presence of bias is a fundamental problem with many applations in a
wide range of scienti ¢ areas, including econometrics [Maddala 1986].

Our goal in this letter is to formulate and understand the e ects of systematic
bias in data analysis. In particular, our main focus is on two fundamental types
of systematic bias: truncation bias, and self-selection biaswhich we introduce in
Section 1.1 and Section 1.2, respectively. In Section 2 we provide amggral frame-
work that captures systematic bias and we show how truncation and sel§election
bias can be realized in this framework. In Section 3, we present some of orecent
results on addressing these types of bias for density estimation prdéms. Finally,
we provide open directions in Section 4.

Author's address: mzampet@berkeley.edu
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1.1 Truncation Bias

Truncation bias occurs when samples falling outside a subset of theupport of the
population are not observed. The problem of analyzing data with truncation bias
has myriad manifestations in economics, social sciences, and all areas dfypical
sciences, and dates back to famous statisticians like Pearson, Lee, anésker [Pear-
son 1902; Lee 1914; Fisher 1931]. Since then, it has been a central focus of many
studies in econometrics [Maddala 1986], epidemiology see [Klein and Mabberger
2003], and many other scienti ¢ elds. Some real world instantiations of truncation
bias are the following:

Negative Income Tax Experiment [Hausman and Wise 1977]In this example, we
have a dataset that consists of information about households with low wage ras.
The goal of this study is to understand the e ect of education level in the annual
income of the households. In the dataset of [Hausman and Wise 1977], there was
an arti cial truncation in the data collection process. In particular, no data points
were collected if the dependent variable (annual income) was below:3 times the
poverty rate. The traditional method for this data analysis tasks is to use the
ordinary least squares (OLS)regression. It is not hard to see though that in the
presence of truncation the OLS outputs solutions that are biased and can & to
fallacious conclusions about the relationship between annual income andiacation
level as was shown in [Hausman and Wise 1977].

Schooling and Earnings of Low Achievers [Hansen et al. 1970]In this example,
we have samples of people that have been rejected from military, i.ethey scored
low to the Armed Forces Quali cation Test (AFQT), and we wish to estim ate the
following equation

y = f (education; age :::)

where y corresponds to the AFQT score. Again, the data available are truncated
due to the fact that the collected data correspond only to people that reeived a
low AFQT score. This truncation makes again the OLS estimator biased, and lads
to fallacious conclusions.

Hubble's Law in Astronomy [Woodroofe 1985].In this example, we have access
to astronomical data and our goal is to estimate the relationship between tle abso-
lute luminosity (M) of a star and its observed luminosity (m) which also depends
on another parameter called the redshift. One main issue with estimahg this re-
lationship betweenm and M is that we only have access to truncated data and in
particular we may observe one star only ifm t wheret is some threshold that
depends only on the measurement device.

E cacy of COVID-19 Vaccine [Dagan et al. 2021]. In many biomedical and epi-
demiological studies truncation or censoring is a classical type of biadn this par-
ticular study of the e cacy of a COVID-19 vaccine, truncation occurs in the control
group of non-vaccinated people because after a while they receive thaacine.

1.2 Self-selection Bias

Following the example of [Roy 1951], consider a village with two possibleccupa-
tions: hunting and shing. Everyone in the village chooses the occuption that
maximizes their earning based solely on their own capabilities. Conder now a

ACM SIGecom Exchanges, Vol. 20, No. 1, July 2022, Pages 55{63



Analyzing Data with Systematic Bias 57

statistician collecting observations of the earnings and occupations &m this vil-
lage with the goal of estimating a model that predicts the earnings that a farticular
person would make as a sherman or as a hunter. It is not hard to see that aplying
naive statistical analysis techniques, which ignore the self-settion bias, would pro-
duce wrong results. Self-selection bias arises in di erent forms many fundamental
settings:!

Imitation Learning. Consider the problem of learning an optimal policy in some
contextual bandit setting wherein we observe the arms (e.g. treatmaets) pulled by
an expert (e.g. doctor) in di erent contexts (e.g. patients). Modeling the reward
(e.g. e cacy) from each arm j as an unknown function f,, (x;";) of the context
x and additional randomness"; that the expert might observe but we do not, we
assume that the expert selects the arnj with the highest reward max; ff., (x;";)g.

expert make decisions in di erent contexts. This scenario is an istantiation of a
statistical analysis task with self-selection bias since we do not ge€o observe the

that was selected from the expert, i.e., maxffy, (x;";)g.

Learning from Strategically Reported Data. A widely studied setting featuring self-
selected data is one wherein agents strategically chose which data teport. This is
a standard challenge in econometrics, which has recently receiveddreased atten-
tion in machine learning literature due to the impact of learning-mediated decisions
in various contexts; see, e.g., [Hardt et al. 2016; Krishnaswamy et al. 2020; Liu and
Garg 2021] and their references. A common example is the reporting of staaddized
test scores in college admissions, where applicants have a variety dhedardized
tests available to them, and are only required to report a chosen sulesd of them.

Learning from Market Data. Following [Fair and Ja ee 1972], consider a linear
model of the a market, wherein there is a supply functionS(x;"s) = wix+ "s and
a demand functionD (x;"p) = W} X + "p, wherex corresponds to a feature vector
of the market, ws and wp are the coe cients that determine linear functions S and
D, and"s, "p correspond some random noise. If the market is in disequilibrium
then supply does not equal demand, i.e.S(x;"s) 6 D(x;"p). So the quantity
transacted isQ(x) = min f S(x;"s); D(X; " p)g. If we want to estimate ws, wp from
data of the form f (x(); Q(x())g; then this problem can be expressed as a problem
of linear regression with self-selection bias [Cherapanamijeri et al. 202Rb

Learning from Auction Data. [Athey and Haile 2002] and a large body of liter-
ature in Econometrics consider the problem of learning bid (and valuatbn) dis-
tributions from auction data with partial observability, wherein only the winner
of each auction and the price they paid are observed. Consider such obsations
in repeated rst-price auctions. We can cast this problem as an instane of self-
selection problem since we only get to see the maximum of the bids at eviteration.
A body of work in the literature has provided estimation and identi ¢ ation results
in this setting [Athey and Haile 2007], including recent work of [Cheramnamijeri
et al. 2022a] which demonstrates algorithms for estimating the bid distritutions
non-parametrically (see also Informal Theorem 3.2).

1These applications of self-selection bias are from the work of [Cherapanamjeri et al. 2022b]
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2. SYSTEMATIC BIAS IN DATA

For simplicity of exposition we present our general framework for the dasity es-
timation problem only, but similar formulation can be obtained for regresson and
classi cation problems as well, as we discuss in Section 3.1.

Assume that there is an unknown distribution P with support S RY. The
traditional density estimation problem can be formulated as follows.

De nition 2.1 (Density Estimation). Let " > 0, P a probability distribution
that belongs to a family of probability distributions D and has supportS  RY.
Given as input n i.i.d. samplesxy, :::, X5 drawn from P, our goal is to compute
a distribution Q such that dist(P;Q) " with probability of failure at most 1%,
where dist( ; ) is a distance metric or a divergence between probability distritutions,
e.g., the total variation distance, or the Kolmogorov distance, or the KL-divergence.
If we specify the family of distributions D and the distance metric dist and there
exist a smallest numberf (d;") such that for every n > f (d;") the above problem
is solvable, then we callf (d;") the sample complexity of this density estimation
problem. The running time of the fastest algorithm that takes as input x4, :::, X;
and outputs Q is the time complexity of this problem.

Remark. A simpli cation that we make in the formulation above is that we ignore

the dependence on the probability of failure, which for the purposef this letter

we assume is a constant, e.g., 1%. In virtually all the settings that we @cuss, the
probability of failure can be decreased to if we pay an additional log(1= ) factor
in sample and time complexity.

Example (DKW Inequality). Assume that d = 1, dist( A;B) is the Kolmogov dis-
tance, i.e., the maximum di erence of the cumulative distributi on functions of A
and B, and P is the set of all probability distributions over R. In this setting the
celebrated DKW inequality [Dvoretzky et al. 1956] provides a simple afjorithm for
solving this density estimation problem, with sample and time compexity O(1="2)
which is known to be tight [Massart 1990].

Next, we de ne the density estimation problem with adversarial corruptions
which is a very well studied problem in statistics and machine leaning [Huber
2011; Diakonikolas and Kane 2019]. This problem provides some intuition for our
formulation of systematic bias.

De nition 2.2 (Density Estimation with Corruptions) . Let > 0, P a proba-
bility distribution that belongs to a family of probability distribu tions D and has
support S RY. We are given as inputn corrupted samplesz,, :::, z, such that
zi = hj(x) where xq, :::, X, are i.i.d. samples drawn fromP and h; : S! S are
arbitrary unknown functions.? For any meaningful estimation to be possible we
require that at least (1 ) n of the h;'s equal to the identity, i.e, h;j(x) = x for
all x 2 S. Our goal is to compute a distribution Q such that dist(P; Q) g( )
with probability of failure at most 1%. If we specify the family of distr ibutions D,
the distance metric dist, and g and there exist a smallest numberf (d; ) such that

20bserve that since h; is arbitrary and unknown, the choice of h; may depend on the rest of the
samples X1;:::;Xi 1;Xj+1 ;Xn as well.
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for everyn >f (d; ) the above problem is solvable then we calf (d; ) the sample
complexity of this density estimation problem. The running time of the fastest
algorithm that takes as input Xy, :::, X, and outputs Q is the time complexity of
this problem.

Example (DKW Inequality Continued). It is easy to see that the the empirical
cumulative distribution function that is used to prove the DKW in equality is ro-

bust to  fraction of adversarial corruptions. This means that we can solve the
density estimation problem with corruptions with g( ) = and sample and time
complexity O(1= 2).

There are a few things to observe about De nition 2.2.

(1) The problem formulation allows for a very general class of corruptions isice we
have no restrictions or knowledge about a small fraction of theh;'s.

(2) Most importantly the fraction of corrupted data, i.e., data z for which h; is
not equal to the identity, determines the accuracy that we can achiewe, i.e., we
cannot hope to estimateP in distance " unless” g( ).

The second point above is what makes the adversarial corruptions framewkrnot

applicable in many settings where the data collection procedure inbduces bias to
all the data and not just a small fraction of them, as the examples from Sedobns 1.1
and 1.2 illustrate. This leads us to the formulation of density estimation with

systematically biased data.

De nition 2.3 (Density Estimation with Systematic Bias). Let "> 0, P a prob-
ability distribution that belongs to a family of probability distribu tions D and has
support S RY. We are given as inputn systematically biased sampleszy, :::,
z, such that z; = h(x;) where xy, :::, X, are i.i.d. samples drawn fromP and
h:S! TJ[f?g is a function that is known to belong to a known family of func-
tions H. Depending on the model we might observe or not observe ang; with
zi = ?. In that case n is the total number of z;'s observed. Our goal is to compute
a distribution Q such that dist(P; Q) " with probability of failure at most 1%.
If we specify the family of distributions D, a family of functions H, the distance
metric dist and there exist a smallest numberf (d; ") such that for every n >f (d;")
the above problem is solvable then we calfl (d; ") the sample complexity of this den-
sity estimation problem with systematic bias H. The running time of the fastest
algorithm that takes as input Xy, :::, X, and outputs Q is the time complexity of
this problem.

The main di erences of De nition 2.2 and De nition 2.3 are the followin g.

(1) Inthe corruption framework we do not have knowledge abouth; other than that
the fraction of corruption is limited, whereas in the systematic biasframework
we know that the bias is the same for all the samples, this is why we calit
systematic, and also we know the seH that h belongs to.

(2) On the other hand the important feature of the systematic bias is that in many
settings, it allows for estimation up to arbitrarily small error ", assuming that
we have enough samples, even though the bias functioh applies to all the
data.
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We are now ready to show how truncation bias, censoring, and self-s&lon bias
can be expressed in the framework of systematic bias.

Truncation Bias { Censoring. If we know the truncation/censoring then the set
of functions H contains only one functionh whereh(x) is equal to x if x is inside the
survival set K S and is equal to? otherwise. The di erence between truncation
and censoring is that for the former we do not observe the; = ? points whereas
for the latter we observe them as well.

Self-selection Bias. The density estimation instantiation of self-selection bias ap-

h(x;) = (max Xxj ; arg maxxi ):
(xi) (j2[d] j ng[d] i)

This corresponds to observing the highest bid and the identity of the highest bidder
in a repeated rst-price auction and trying to estimate the distri bution of each
individual agent.

Both of the above problems are impossible if we allow the family of distibutions D
unrestricted. As we will see in the next section, to get algorithms vith small sample
and time complexities we need to assume thaD contains smooth distributions for
the case of truncation bias or product measures for the case of self-sefien bias.

3. RESULTS

Both truncation bias and self-selection bias introduce di cult est imation questions
even for the fundamental case wheré is the set of Gaussian distributions, but
for simplicity and for consistency with the examples that we preseted for classical
density estimation and density estimation with corruption we will p resent our result
in the case whereD cannot be parameterized from a small set of parameters. For
our results for the Gaussian case we refer to [Daskalakis et al. 2018].

First we need the de nition of smooth probability distributions.

De nition 3.1. Letd=1, S =[0;1], then we say that the family of distributions
D with support S is a smooth family of distributions if for every P 2 D it holds
that
(1) P has a density,
(2) the logarithm of the density of P is an in nitely di erentiable function,
(3) the i-th derivative of the log-density of P is upper bounded byM ', for some
constant M .

In order to get some intuition of the family of smooth distributions we observe
that it contains all the distributions with log-density of the form fi(xX)+  fx(X)
for a nite number k, wheref; can be any of the following:

|a polynomial poly( x) of constant degree,
| fi(x) = exp(poly( x)),
| fi(x) = sin(poly( x)).
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An example of a class of distributions that are not smooth according to the abve
de nition is the class of distributions with log-density equal to a log(x).

We are now ready to present our results for density estimation from tuncated
data.

Informal Theorem 3.1. Assume that we observe truncated samplesz;;:::;z,
from P 2 D, where D is a smooth family of distributions with support[0; 1] and the
truncation is with respect to a known survival setK  [0; 1]. If the measure ofK
with respect to P is at least 1% then there exists an algorithm to estimateP from
truncated samples with error” in total variation distance and with sample and time
complexity poly(1=").

The surprising conclusion of this theorem is that if we know that the unknown
distribution P is smooth, as per De nition 3.1, then we can identify P in its whole
support [0; 1], even though we observe samples only from a subsit of [0;1]. In
other words we can extrapolate and estimateP® even in a region that is completely
hidden to us due to the truncation. An intuition for why this is possi ble comes
from Taylor's theorem in calculus. Taylor's theorem suggests that if afunction f
is su ciently smooth then the knowledge of the values of all the derivatives of f
at a point xo is su cient to determine the values of f in the whole interval [0; 1].
The technical contribution of our work is to provide a statistical ver sion of Taylor's
theorem where instead of having access to the values of the derivatg, we have
access only to truncated samples of the unknown distribution. For moe details
about Informal Theorem 3.1 and its multi-dimensional generalizations, werefer to
[Daskalakis et al. 2021].

Next, we present our results for density estimation from data with séf-selection
bias.

Informal Theorem 3.2. Assume that we observen samplesz;;:::;z, with
the self-selection bias described in the previous section frol 2 D, where D is the
family of product measures over[0; 1]°. Then there exists an algorithm to estimate
P the samples with self-selection bias with errot in Levy distance® and has sample
and time complexity O((1=")9).

As we already explained the above theorem can be applied to learning frormuc-
tion data which is a very fundamental problem in econometrics [Atheyand Haile
2002]. For a detailed presentation of Informal Theorem 3.2 we refer to [Cha-
panamjeri et al. 2022a]. As we show in [Cherapanamijeri et al. 2022a] the exponen-
tial dependence ond is necessary for this problem and can only be avoided if we
restrict our attention to estimating the probability distribution only on a subset of
its support. This can be formulated by changing the distance metric fom the Levy
distance to one that only measures the di erence in a large subset of # support.

In that case our sample and time complexity become poly(%").

3L evy distance is very similar to the Kolmogorov distance but  allows for an " error in the x-axis
of the cumularive distribution functions
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3.1 Beyond Density Estimation

The main focus of this letter is on density estimation, but similar formulations
can be provided in other data analysis tasks like regression and classiation. In
linear regression, for example, we have access to samples of the formy) where
y = w' x+" and our goal is to estimatew. Truncation or self-selection in this setting
applies to the dependent set of variabley and we observe X; h(y)) instead of (x; y).
In this setting the assumption on the family of probability distribu tions D applies
to the distribution of the random noise ". Similar formulations can be done for
classi cation problems as well. For a precise formulation and results orregression
and classi cation problems with systematic bias we refer to [Daskalalks et al. 2019;
llyas et al. 2020; Daskalakis et al. 2020; Daskalakis et al. 2021; Cherapanamijeri
et al. 2022b].

4. OPEN PROBLEMS

As we mentioned in the previous section there are a lot of results for desity es-
timation, regression, and classi cation problems under truncation or séf-selection
bias. An interesting direction that is still not well-explored is how truncation or
self-selection bias a ects the learning algorithms in online or dynamg environments.
A rst step in this direction has been taken in [Plevrakis 2021], but there are many
interesting problems in this area that are still open: (1) Are there orline learning
or bandit algorithms that are robust to truncation or self-selection bias? For self-
selection bias this is closely related with the problem of imitation karning; (2) Can
we e ectively control dynamical systems for which we cannot observeteir state at
every time step?

Beyond truncation and self-selection the natural question that arisesis the fol-
lowing: Can we provide a characterization of the distribution families D and the
functions H for which we can solve the density estimation problem with systemait
bias?
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Fairness and Equity in Resource Allocation and
Decision-Making: An Annotated Reading List

FAIDRA MONACHOU
Stanford University

and

ANA-ANDREEA STOICA
Columbia University

Fairness and equity considerations in the allocation of soc ial goods and the development of algo-
rithmic systems pose new challenges for decision-makers an d interesting questions for the EC com-
munity. We overview a list of papers that point towards emerg ing directions in this research area.

Categories and Subject Descriptors: F.2 [ Theory of Computation ]: Analysis of Algorithms
and Problem Complexity; J.4 [ Computer Applications ]: Social and Behavioral Sciences]|
Economics

General Terms: Algorithms, Machine Learning, Economics, A  pplied Modeling

Additional Key Words and Phrases: Fairness, Equity, Resour ce Allocation, Decision-making

Improving fairness and equity of decision-making systems used ithe allocation of
social goods is an important priority in a wide range of domains. For examplghow
can a government fairly and equitably allocate scarce medical resoursdo citizens?
What does it mean for a machine learning algorithm used for loan allocation to
be fair? How can an online matching platform for freelance workers ensurequal
access to employment opportunity for all?

While many di erent disciplines have studied these problems,we argue that they
lie at the very center of the economics and computation eld, as algorithmsconsti-
tute a central mechanism in many traditional decision-making systens. Whether
algorithms are in the role of assisting in resource allocation at scale, diagising dif-
ferences in access, or governing new environments in which resoas are distributed
(e.g. online platforms), fairness questions lie at the core of their dggn and imple-
mentation. Thus, these challenging questions pose a unique opportity, not only
to uncover untapped research insights utilizing tools from mechaism design, algo-
rithms, machine learning, and optimization, but most importantly to col lectively
contribute potential research-grounded solutions to emerging soctal problems.

In an attempt to highlight some of the most promising directions for future
research, in this article we o er a list of papers that could serve as a seful starting
point for the interested readers in the EC community. We acknowledje that the list
below is far from exhaustive and fully representative, since dued space constraints,
we omitted many important and closely related papers. Nevertheless, & hope it
serves as a useful starting point for the interested readers in th&C community,
highlighting some of the most promising directions for future researh.

Authors' addresses: monachou@stanford.edu, astoica@cs.columbia.edu
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(1)

)

3)

(4)

(5)

(6)

(7)

F. Monachou and A. Stoica

Phelps, E. S. 1972. The statistical theory of racism and sexism.The Ameri-
can Economic Review 624, 659{661.

In his seminal paper, Phelps, often credited together with K. Arrow, introduces
statistical discrimination : the theory that, even in the absence of prejudice, dis-
crimination can arise due to uncertainty about individuals' true char acteristics.

Coate, S. and Loury, G. C. 1993. Will a rmative-action policies eliminate
negative stereotypes?The American Economic Review 83 5, 1220{1240.

This classic paper introduces discrimination ascoordination failure, i.e., when
groups of ex ante identical agents choose di erent equilibrium stratgies. Its
simple equilibrium model is the basis of multiple subsequent wrks until today.

Kleinberg, J., Mullainathan, S., and Raghavan, M. 2017. Inherent
trade-o s in the fair determination of risk scores. In 8th Innovations in Theo-
retical Computer Science Conference Vol. 67. 43:1{43:23

A staple of the fairness research literature, this paper presents aheoretical
analysis exploring the trade-o s between three main statistical de nitions of
group fairness, showing that not all can co-exist when the underlyingdata is
not completely unbiased.

Hardt, M., Price, E., and Srebro, N. 2016. Equality of opportunity in
supervised learning. Advances in Neural Information Processing Systems 29

This paper proposes an alternative de nition of fairness to demographic prity
that shows a better alignment between objectives and diversity cosiderations.
Formalized asequality of opportunity, this de nition bridges notions of equality
and fairness and opens up avenues of research in designing mechanisimat
equalize chances of obtaining resources across di erent groups.

Hu, L. and Chen, Y. 2020. Fair classi cation and social welfare. InProceed-
ings of the 2020 Conference on Fairness, Accountability, and Tragparency
535{545

This paper explores the connections between fair classi cation and smal wel-
fare maximization, pointing towards how \more fair" classi ers can worsen
welfare outcomes for all social groups.

Kilbertus, N., Carulla, M. R., Parascandolo, G., Hardt, M., Ja nz-
ing, D., and Sch elkopf, B. 2017. Avoiding discrimination through causal
reasoning. Advances in Neural Information Processing Systems 30

This paper proposes a generalized conceptual method for de ning faiess
through a causality criterion, generalizing from observational methods that
de ne fairness. Through its practical distinction between protected attributes
and their proxies, this paper opens up avenues of interdiscipliary research for
establishing interventions that remove discrimination through causal pathways.

Bertsimas, D., Farias, V. F., and Trichakis, N. 2012. On the e ciency-
fairness trade-o . Management Science 5812, 2234{2250.
Following upon the concept ofprice of fairness introduced by the same authors,

this paper considers fairness-e ciency trade-o s that a decisionmaker faces in
the allocation of scarce resources under the-fairness scheme.
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Manshadi, V., Niazadeh, R., and Rodilitz, S. 2021. Fair dynamic ra-
tioning. In Proceedings of the 22nd ACM Conference on Economics and Com-
putation. 694{695

This paper considers the problem of allocating goods to sequential aring
agents with varying levels of need in an e cient and equitable manner, con-
tributing to less explored areas such aslynamic fairness

Kasy, M. and Abebe, R. 2021. Fairness, equality, and power in algorithmic
decision-making. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. 576{586.

This paper presents a series of limitations to observational de nitbns of fairness
through the lens of social welfare and theories of justice, and shiftshe focus to-
wards hidden concepts of within-group heterogeneity and merit-basethequity.

(10) Barocas, S. and Selbst, A. D. 2016. Big data's disparate impact. Cali-

fornia Law Review 104 671.

As EC researchers are puzzled with contradicting notions of fairness ahthe
legal limitations of their proposed technical solutions, this essay o es a law
perspective to how data-driven algorithmic techniques can lead to thparities
and highlights open questions in the intersection of law and computation
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Economics and Computation Meets Cognitive
Biases: A (Biased) Annotated Reading List

SIGAL OREN
Ben-Gurion University of the Negev

This is an annotated reading list on papers in the intersecti on of economics and computation and
behavioral economics.

General Terms: Economics, Theory
Additional Key Words and Phrases: Behavioral Economics, Me chanism Design, Present Bias

A recently growing line of works aims to bridge the gap between Economgand
Computation and Behavioral Economics. Works in this space often come in onef
these two avors: (1) using tools from theoretical computer scienceo devise and
study general models of cognitive biases and (2) considering playersitv cognitive
biases in well-studied settings from Algorithmic Game Theory. This reading list is
composed of some typical papers for each of these avors as well as related map
from Behavioral Economics. The list is intended to serve as a startig point for
researchers interested in this line of work and is not comprehensé/

First, we consider works about planning for the future when the agentsexhibit
some planning-related biases. Such biases include present biasnktcost bias and
projection bias. These biases are well studied in the behavioral eaomics literature
in experimental and empirical settings. However, the theoretical nodels suggested
to capture them are often quite speci c to the setting. This line of work demon-
strates that by harnessing tools from theoretical computer science ahgraph theory,
we could obtain a much more general model and use it to ask and answer quéasts
otherwise impossible. Our focus on this list will be on present las.

The second type of works we list takes settings well-studied in Algothmic Game
Theory and aims to make them more applicable to real-life by considerig some cog-
nitive biases that the players exhibit. While planning-related biases, we previously
discussed, have negative implications, here, there are settinga which taking the
biases into account may have positive implications. In this readinglist, we focus
on works of this type situated in the eld of algorithmic mechanism design.

(1) [O'Donoghue and Rabin 1999] - Individuals exhibiting present bias foas more
on the present than on the future. According to the hyperbolic discounting
model such agents will multiply the cost (or utility) they get now b y a factor of

and the the utility at any future step t by a factor of '. This classic paper
in behavioral economics studies simple planning settings (e.g., \wich day of
the week should | complete the review?") for agents exhibiting presnt bias.

(2) [Kleinberg and Oren 2014] - This paper suggests a general graph-theoreti

Authors' addresses: sigal3@gmail.com
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model for capturing the planning behavior of agents that exhibit present bias.
The generality of the model enables it to capture di erent scenariosthat previ-
ously each required a di erent speci ¢ model and compare them. For gample,
it allows a characterization of the types of scenarios in which the loss othe
agent due to its bias is large.

(3) [Gravin et al. 2016] - While most papers assume that the present bias pameter
of the agent is xed, the current paper assumes that the parameter is sampled
each step independently from a given distribution. The paper ideti es graphs
in which the loss of the agent due to its bias is bounded and constructof each
bias-distribution a graph maximizing the agent's loss. The latter is done by
identifying surprising connections to optimal pricing theory.

(4) [Albers and Kraft 2021] A high-level question in the setting of [Kleinberg and
Oren 2014] is how could we make changes in the task graph in order to help the
agent mitigate the e ects of its bias. Previous papers on this question ansider
setting deadlines; this corresponds to computing a subgraph wherthe agent
will reach the target. The current paper takes a di erent approach. It sets
penalties on some tasks to deter the agent from completing them and pras
that this approach is quite e ective.

(5) [Strack and Taubinsky 2021] The last paper we mention on this topic is a Hi
of an outlier that o ers a di erent perspective on planning behavior. Present
bias (or as it is often termed these dayspresent focug often leads to time-
inconsistent behavior in which agents keep changing their plan. Thepaper
suggests an alternative explanation, which essentially says that we canot dis-
tinguish between an agent that behaves inconsistently and an agent that e-
haves consistently but has some uncertainty regarding the future.

(6) [Kahneman et al. 1991] - This paper describes a classic experiment m@nstrat-
ing and estimating the endowment e ect (i.e., an individual values items more
once he owns them.). The rough idea is to give half of the subjects sonubject
(e.g., a coee mug) and ask them how much they are willing to sell it, ard
compare it with the price that the other half of the subjects are willing to pay
for it.

(7) [Babaio et al. 2018] - In a combinatorial auction, Walrasian equilibrium is only
guaranteed to exist if the players' valuations are gross substitutes.The paper
suggests a model of endowment e ect for combinatorial auctions and shows
that if we assume that the players have a (mild) endowment e ect, we can
considerably extend the class of valuations for which a Walrasian equitiium
exists to sub-modular valuations.

(8) [Ezra et al. 2020] - This paper considers di erent ways to model theendowment
e ect in combinatorial auctions and studies the implications of the di erent
modeling assumptions on the class of valuations in which a Walrasian edlib-
rium exists. The paper highlights the need for more experimental wodk on the
endowment e ect in combinatorial auctions to understand which assunptions
are more plausible.

(9) [Gneezy 2005] - The paper belongs to a line of work in behavioral economics
arguing that people facing an opportunity to increase their payo by lying do
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not always choose to lie. The paper presents experiments demonating that
people tend to lie less when their bene t from the lie is smaller vith respect to
the loss of another person, even a stranger, from the lie.

(10) [Dobzinski and Oren 2022] - The paper builds on literature on lying belvior
in behavioral economics to challenge a fundamental paradigm of mechanism
design: bidders that could lie to increase their payo will always do so. Based
on behavioral assumptions extracted from this literature, the paper sudies
an auction model in which to determine whether to report their valuations
truthfully, the bidders compare their gain from lying against the loss of the
others. The paper asks whether an auctioneer can take advantage of bidders
behaving this way to increase its revenue.
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Spillover E ects in Online Field Experiments: An
Annotated Reading List

YUAN YUAN
Purdue University
and

TRACY XIAO LIU
Tsinghua University

Here we provide an overview of an important issue in online e Id experiments: spillover e ects.
We include a reading list for researchers in both academia an d industry who are interested in this
topic.

General Terms: Electricity, Commerce, Economics, Agents, Meta, Stu

Additional Key Words and Phrases: Templates, Skeletons, Th ings

Field experiments typically aim to quantify how a given intervention (e.g., a new
policy) a ects certain outcomes in a population. With the growing popularity of
online communities and marketplaces, there has been a correspondirigcrease in
online eld experiments. However, many online and o ine experiments are subject
to interference spillover e ects. Spillover e ects can take \arious forms: in some
experiments, a user's outcome may be aected by the treatment asgnments of
other subjects; in within-subject experiments, the treatmert assignment that the
subject receives at one stage may a ect the outcome at a later stage (also fexred
to as carryover e ects).

With the presence of spillover e ects, the conventional way of ran@mizing sam-
ples may be problematic. Intuitively, spillover e ects mean that the outcome of
an observation is a ected not only by their own treatment assignment but also
by the treatment assignments of other observations. The existence ofpdlover ef-
fects violates the stable unit treatment value assumption (SUTVA), the standard
assumption in causal inference. For example, the existence of sociantagion pro-
vides empirical evidence of the spillover e ect: if one person iassigned a treatment,
their family, friends, or acquaintances may also indirectly receve this treatment.

The following papers discuss how to detect or take into account sgibver e ects
when we design experiments or analyze experimental data:

(1) Chen, Yan, and Joseph Konstan. \Online eld experiments: A seletive survey
of methods." Journal of the Economic Science Associationl.1 (2015): 29-42.

This paper presents an overview of the design and analysis of online & ex-
periments. It covers representative studies from both economicand computer
science.

Authors' addresses: yuanyuan@purdue.edy liuxiao@sem.tsinghua.edu.cn
See also the authors' Tutorial on Experiment Design at WINE'2 1.
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3)

(4)

(5)

(6)

Y. Yuan and T.X. Liu

Muchnik, Lev, Sinan Aral, and Sean J. Taylor. \Social in uence bias: A ran-
domized experiment.” Science 341.6146 (2013): 647-651.

Using a randomized experiment, this study presents evidence ofosial in u-
ence in social networks, suggesting that the existence of spilloves ects may
challenge the SUTVA when we analyze experiments on social networks.

Ugander, Johan, Brian Karrer, Lars Backstrom, and Jon Kleinberg. \Graph
cluster randomization: Network exposure to multiple universes.”" h Proceed-
ings of the International Conference on Knowledge Discovery and Data Ming,
pp. 329-337. 2013.

This paper designs an approach to tackle with spillover e ects on largescale
social networks by creating clusters on social networks and performg random-
ization on the cluster level. This approach helps reduce bias when westimate
the treatment e ect with the presence of spillover e ects.

Pouget-Abadie, Jean, Guillaume Saint-Jacques, Martin Saveski, Wiao Duan,
Souvik Ghosh, Ya Xu, and Edoardo M. Airoldi. \Testing for arbitrary inter-
ference on experimentation platforms." Biometrika 106, No. 4 (2019): 929-940.

This paper proposes a novel approach for detecting spillover e ectsn social
networks by simultaneously running individual (Bernoulli) and cluster level
randomized experiments and comparing the resulting estimates.

Holtz, David, Ruben Lobel, Inessa Liskovich, and Sinan Aral. \Reduchg in-
terference bias in online marketplace pricing experiments."Available at SSRN
3583836 (2020).

This paper aims to address the interference on two-sided markets. fle au-
thors also compare cluster randomization versus Bernoulli randomizatiorand
nd that the latter greatly reduces bias in estimating treatment e e cts.

Bojinov, lavor, David Simchi-Levi, and Jinglong Zhao. \Design and analysis
of switchback experiments." Available at SSRN 3684168 (2020).

This paper discusses the optimal design and analysis of switchback e&p-
ments. The authors also discuss how to account for carryover e ectsthe pre-
vious treatment assignment to one unit may a ect the unit's future outcome.

(7) Aronow, Peter M. and Cyrus Samii. \Estimating average causal e ects under

general interference, with application to a social network experinent." The An-
nals of Applied Statistics (2017).
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By relaxing SUTVA, this paper proposes a general framework, named \ex-
posure mapping", to analyze experimental data with the presence of spover
e ects.

(8) Chin, Alex. \Regression adjustments for estimating the global treatment ef-
fect in experiments with interference." Journal of Causal Inference7(2), (2019).

This paper proposes regression adjustment estimators to reduce bias iex-
periment settings that violate SUTVA. The paper also proposes to considethe
modeling of spillover e ects as a feature engineering problem, wibh can further
increase the precision of estimating treatment e ects.

(9) Xu, Ya, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin.
\From infrastructure to culture: A/B testing challenges in large scale social
networks." In Proceedings of the International Conference on Knowledge Dis-
covery and Data Mining (2015). 2227{2236.

This paper discusses practices, challenges, and pitfalls in evaluag results
of online controlled experiments from an industry perspective (LirkedIn).

Please note that this list is far from exhaustive and there are other redted and
exciting papers that are not included.
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Puzzle: Communicating to Plan Noam Nisan's 60th
Birthday Workshop

VINCENT CONITZER
Duke University and University of Oxford

Please send solutions to the author by e-mail, with the title of this puzzle in the subject
header. The best solution will be published in the next issue of SIGecom Exchanges,
provided that this solution is of su ciently high quality. Qu ality is judged by the author,
taking into account at least soundness, completeness, and tarity of exposition. (Inciden-
tally, there is another birthday puzzle for which we still need a solution [1]!)

This is a puzzle in honor of Noam Nisan's 60th birthday and the June 2022 work-
shop associated with it (and perhaps also a bit in honor of one of its distiguished
attendees, Hene Moulin). This workshop was held at the Hebrew Univesity of
Jerusalem in Israel.

Michael, Moshe, and Shaharli.e., a constant number of organizers|are planni ng
the workshop for Noam's 60th birthday, and are trying to predict who, out of n
people, will attend. Whether a person wants to attend is a function ofwho else
attends. \The more the merrier," so for each personi, if i would attend when S
is the set of other attendees, andS  S°, then i would attend when S°is the set
of other attendees. LetS; be the set of setsS of other people for whichi would
attend (so, S; is upward closed).

To split the work, the organizers partition the set of n people among themselves.
Subsequently, each of them gures out, for every playeii in his own part, what S
is. (Note that each organizer thus still needs to think about how much \his" people
like the people in the other parts. But each organizer knowsS; only for peoplei in
his own part.) At this point, the organizers, who of course want the workshop to
be successful, must communicate with each other to nd thelargestpossible set of
peopleS that can consistently attend (i.e., the largest set with the property such
that every person in it will attend given that everyone else in the s¢ attends: i.e.,
foreachi 2 S , we haveS nfig 2 S;, and S is the largest set with that property).

Up to a constant factor, how many bits of communication do the organizers neg
to gure this out?
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